On stability and hyperbolicity for polynomial automorphisms of C^2 - Archive ouverte HAL
Article Dans Une Revue Annales Scientifiques de l'École Normale Supérieure Année : 2017

On stability and hyperbolicity for polynomial automorphisms of C^2

Résumé

Let (fλ)λ∈Λ be a holomorphic family of polynomial automorphisms of C2. Fol- lowing previous work of Dujardin and Lyubich, we say that such a family is weakly stable if saddle periodic orbits do not bifurcate. It is an open question whether this property is equivalent to structural stability on the Julia set J∗ (that is, the closure of the set of saddle periodic points). In this paper we introduce a notion of regular point for a polynomial automorphism, inspired by Pesin theory, and prove that in a weakly stable family, the set of regular points moves holomorphically. It follows that a weakly stable family is probabilistically structurally stable, in a very strong sense. Another consequence of these techniques is that weak stability preserves uniform hyperbolicity on J∗.
Fichier principal
Vignette du fichier
hyp.pdf (320.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01068578 , version 1 (26-09-2014)

Licence

Identifiants

  • HAL Id : hal-01068578 , version 1

Citer

Pierre Berger, Romain Dujardin. On stability and hyperbolicity for polynomial automorphisms of C^2. Annales Scientifiques de l'École Normale Supérieure, 2017, 50 (2), pp.449-477. ⟨hal-01068578⟩
436 Consultations
213 Téléchargements

Partager

More