Nonoptimality of constant radii in high dimensional continuum percolation - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2016

Nonoptimality of constant radii in high dimensional continuum percolation

Résumé

Consider a Boolean model $\Sigma$ in $\R^d$. The centers are given by a homogeneous Poisson point process with intensity $\lambda$ and the radii of distinct balls are i.i.d.\ with common distribution $\nu$. The critical covered volume is the proportion of space covered by $\Sigma$ when the intensity $\lambda$ is critical for percolation. Previous numerical simulations and heuristic arguments suggest that the critical covered volume may be minimal when $\nu$ is a Dirac measure. In this paper, we prove that it is not the case in sufficiently high dimension.
Fichier principal
Vignette du fichier
Boolean-high-dimension-AOP-final.pdf (197.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01068557 , version 1 (25-09-2014)

Identifiants

Citer

Jean-Baptiste Gouéré, Régine Marchand. Nonoptimality of constant radii in high dimensional continuum percolation. Annals of Probability, 2016, 44 (1), pp.307-323. ⟨10.1214/14-AOP974⟩. ⟨hal-01068557⟩
286 Consultations
147 Téléchargements

Altmetric

Partager

More