Construction of Hadamard states by characteristic Cauchy problem - Archive ouverte HAL
Article Dans Une Revue Analysis & PDE Année : 2016

Construction of Hadamard states by characteristic Cauchy problem

Christian Gérard
  • Fonction : Auteur
  • PersonId : 869047
Michał Wrochna

Résumé

We construct Hadamard states for Klein-Gordon fields in a spacetime $M_{0}$ equal to the interior of the future lightcone $C$ from a base point $p$ in a globally hyperbolic spacetime $(M, g)$. Under some regularity conditions at future infinity of $C$, we identify a boundary symplectic space of functions on $C$, which allows to construct states for Klein-Gordon quantum fields in $M_{0}$ from states on the ${\rm CCR}$ algebra associated to the boundary symplectic space. We formulate the natural microlocal condition on the boundary state on $C$ ensuring that the bulk state it induces in $M_{0}$ satisfies the Hadamard condition. Using pseudodifferential calculus on the cone $C$ we construct a large class of Hadamard boundary states on the boundary with pseudodifferential covariances, and characterize the pure states among them. We then show that these pure boundary states induce pure Hadamard states in $M_{0}$.
Fichier principal
Vignette du fichier
hadamard-characteristic-cone-revised2.pdf (468.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01067150 , version 1 (23-09-2014)
hal-01067150 , version 2 (08-10-2014)
hal-01067150 , version 3 (08-11-2014)
hal-01067150 , version 4 (03-01-2017)

Identifiants

Citer

Christian Gérard, Michał Wrochna. Construction of Hadamard states by characteristic Cauchy problem. Analysis & PDE, 2016, 9 (1), pp.111-149. ⟨10.2140/apde.2016.9.111⟩. ⟨hal-01067150v4⟩
353 Consultations
296 Téléchargements

Altmetric

Partager

More