Regularity of BSDEs with a convex constraint on the gains-process - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2018

Regularity of BSDEs with a convex constraint on the gains-process

Résumé

We consider the minimal super-solution of a backward stochastic differential equation with constraint on the gains-process. The terminal condition is given by a function of the terminal value of a forward stochastic differential equation. Under boundedness assumptions on the coefficients, we show that the first component of the solution is Lipschitz in space and 1/2-Hölder in time with respect to the initial data of the forward process. Its path is continuous before the time horizon at which its left-limit is given by a face-lifted version of its natural boundary condition. This first component is actually equal to its own face-lift. We only use probabilistic arguments. In particular, our results can be extended to certain non-Markovian settings.
Fichier principal
Vignette du fichier
BEM14.pdf (217.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01065794 , version 1 (18-09-2014)

Identifiants

Citer

Bruno Bouchard, Romuald Elie, Ludovic Moreau. Regularity of BSDEs with a convex constraint on the gains-process. Bernoulli, 2018, 24 (3), pp.1613-1635. ⟨hal-01065794⟩
345 Consultations
124 Téléchargements

Altmetric

Partager

More