Wavelet based texture modeling for the classification of very high resolution maritime pine forest images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Wavelet based texture modeling for the classification of very high resolution maritime pine forest images

Résumé

This study evaluates the potential of wavelet-based texture modeling for the classification of stand age in a managed maritime pine forest using very high resolution satellite data. A cross-validation approach based on stand age reference data shows that multivariate modeling of the spatial dependence of wavelet coefficients outperforms the use of features derived from co-occurrence matrices. Simultaneously adding features representing the color dependence and leveling the dominant orientation in anisotropic forest stands enhances the classification performances. These results obtained from panchromatic and multispectral PLEIADES data confirm the ability of such wavelet-based multivariate models to efficiently capture the textural properties of very high resolution forest data and opens up perspectives for their use in the mapping of mono-specific forest structure variables.
Fichier principal
Vignette du fichier
Regniers14_IGARSS.pdf (332.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01064405 , version 1 (16-09-2014)

Identifiants

  • HAL Id : hal-01064405 , version 1

Citer

Olivier Regniers, Lionel Bombrun, Dominique Guyon, Jean-Charles Samalens, Claire Tinel, et al.. Wavelet based texture modeling for the classification of very high resolution maritime pine forest images. IEEE Geoscience and Remote Sensing Symposium, 2014, Québec, Canada. pp.2027-2030. ⟨hal-01064405⟩
244 Consultations
271 Téléchargements

Partager

More