Efficient Dimension Reduction Of Global Signature With Sparse Projectors For Image Near Duplicate Retrieval - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Efficient Dimension Reduction Of Global Signature With Sparse Projectors For Image Near Duplicate Retrieval

Résumé

In this paper, we tackle the storage and computational cost of linear projections used in dimensionality reduction for near duplicate image retrieval. We propose a new method based on metric learning with a lower training cost than existing methods. Moreover, by adding a sparsity constraint, we obtain a projection matrix with a low storage and projection cost. We carry out experiments on a well known near duplicate image dataset and show our algorithm behaves correctly. Retrieval performances are shown to be promising when compared to the memory footprint and the projection cost of the obtained sparse matrix.
Fichier principal
Vignette du fichier
negrel14icpr.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01064050 , version 1 (15-09-2014)

Identifiants

  • HAL Id : hal-01064050 , version 1

Citer

Romain Negrel, David Picard, Philippe-Henri Gosselin. Efficient Dimension Reduction Of Global Signature With Sparse Projectors For Image Near Duplicate Retrieval. IAPR International Conference on Pattern Recognition, Aug 2014, Stockholm, Sweden. 6 p. ⟨hal-01064050⟩
400 Consultations
410 Téléchargements

Partager

More