Leptin levels in free ranging striped mice (Rhabdomys pumilio) increase when food decreases: the ecological leptin hypothesis.
Résumé
: Leptin is a hormone informing the body about its fat stores, reducing appetite and foraging and as such reducing fattening of individuals. In laboratory rodents, leptin secretion is highly correlated to the amount of adipose tissue. We compared this to the alternative ecological leptin hypothesis, which based on the behavioural effects of leptin predicts that leptin levels are disassociated from adipose tissue when fattening is of evolutionary advantage to survive coming periods of low food availability. Studying a species that has to survive a dry season with low food availability, we tested the ecological leptin hypothesis, predicting low leptin levels when food availability and thus adiposity is high promoting foraging and fattening, but high leptin levels in the seasons of low food availability, reducing energetic costs due to foraging. We measured leptin levels in 154 samples of free living African striped mice (Rhabdomys pumilio). Striped mice gain significant body mass during the moist season to survive the following dry season with low food availability. We found a strong seasonal effect, with higher leptin levels in the dry season with low food availability, which was in contrast to the hypothesis deriving from studies on laboratory rodents, but in agreement with ecological leptin hypothesis: leptin levels remained low in the period of high food availability, allowing fattening, but increased during periods of low food availability, possibly suppressing energetically costly foraging in an environment where foraging success would have been very low. Leptin correlated significantly and negatively with testosterone levels, and high testosterone levels in the moist season could explain why leptin levels were low even though food availability was high. However, analysing samples from an experimental laboratory study where testosterone levels were increased via implants found no support for a suppressive role of testosterone on leptin. In sum, our study indicates that in a species with seasonal fattening, leptin levels might be uncoupled from the amount of adipose tissue.