Complete Monotonicity of classical theta functions and applications - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Complete Monotonicity of classical theta functions and applications

Résumé

We produce trigonometric expansions for Jacobi theta functions\\ $\theta_j(u,\tau), j=1,2,3,4$\ where $\tau=i\pi t, t > 0$. This permits us to prove that\ $\log \frac{\theta_j(u, t)}{\theta_j(0, t)}, j=2,3,4$ and $\log \frac{\theta_1(u, t)}{\pi \theta'_1(0, t)}$ as well as $\frac{\frac{\delta\theta_j}{\delta u}}{\theta_j}$ as functions of $t$ are completely monotonic. We also interested in the quotients $S_j(u,v,t) = \frac{\theta_j(u/2,i\pi t)}{\theta_j(u/2,i\pi t)}$. For fixed $u,v$ such that $0\leq u < v < 1$ we prove that the functions $\frac{(\frac{\delta}{\delta t}S_j)}{S_j}$ for $j=1,4$ as well as the functions $-\frac{(\frac{\delta}{\delta t}S_j)}{S_j}$ for $j=2,3$ are completely monotonic for $t \in ]0,\infty[$.\\ {\it Key words and phrases} : theta functions, elliptic functions, complete monotonicity.

Dates et versions

hal-01061025 , version 1 (05-09-2014)

Identifiants

Citer

A. Raouf Chouikha. Complete Monotonicity of classical theta functions and applications. 2014. ⟨hal-01061025⟩
105 Consultations
0 Téléchargements

Altmetric

Partager

More