Iterative Poisson-Gaussian Noise Parametric Estimation for Blind Image Denoising
Résumé
This paper deals with noise parameter estimation from a single im- age under Poisson-Gaussian noise statistics. The problem is formu- lated within a mixed discrete-continuous optimization framework. The proposed approach jointly estimates the signal of interest and the noise parameters. This is achieved by introducing an adjustable reg- ularization term inside an optimized criterion, together with a data fidelity error measure. The optimal solution is sought iteratively by alternating the minimization of a label field and of a noise param- eter vector. Noise parameters are updated at each iteration using an Expectation-Maximization approach. The proposed algorithm is inspired from a spatial regularization approach for vector quantiza- tion. We illustrate the usefulness of our approach on macroconfocal images. The identified noise parameters are applied to a denoising algorithm, so yielding a fully automatic denoising scheme.
Origine | Fichiers produits par l'(les) auteur(s) |
---|