Sharp oracle inequalities and slope heuristic for specification probabilities estimation in discrete random fields. - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2016

Sharp oracle inequalities and slope heuristic for specification probabilities estimation in discrete random fields.

Matthieu Lerasle
D.Y. Takahashi
  • Fonction : Auteur
  • PersonId : 949333

Résumé

We study the problem of estimating the one-point specification probabilities in non-necessary finite discrete random fields from partially observed independent samples. Our procedures are based on model selection by minimization of a penalized empirical criterion. The selected estimators satisfy sharp oracle inequalities in $L_{2}$-risk. We also obtain theoretical results on the slope heuristic for this problem, justifying the slope algorithm to calibrate the leading constant in the penalty. The practical performances of our methods are investigated in two simulation studies. We illustrate the usefulness of our approach by applying the methods to a multi-unit neuronal data from a rat hippocampus.
Fichier principal
Vignette du fichier
finall2_to_submit.pdf (461.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01059692 , version 1 (01-09-2014)

Identifiants

Citer

Matthieu Lerasle, D.Y. Takahashi. Sharp oracle inequalities and slope heuristic for specification probabilities estimation in discrete random fields.. Bernoulli, 2016, 22 (1), pp.325-344. ⟨10.3150/14-BEJ660⟩. ⟨hal-01059692⟩
137 Consultations
107 Téléchargements

Altmetric

Partager

More