Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems using MCMC
Résumé
The resolution of many large-scale inverse problems using MCMC methods requires a step of drawing samples from a high dimensional Gaussian distribution. Based on the reversible jump Markov chain framework, this paper proposes an efficient Gaussian sampling algorithm having a reduced computation cost and memory usage, as compared to classical methods based on Cholesky factorization. The main feature of the algorithm is to perform an approximate resolution of a linear system with a truncation level adjusted using a self-tuning adaptive scheme allowing to achieve the minimal computation cost. The connection between this algorithm and some existing strategies is discussed and its efficiency is illustrated on a linear inverse problem of image resolution enhancement.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...