Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Photonics Année : 2011

Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging

Résumé

Coherent coupling between distant two-level systems is a fundamental process in several physical contexts, from natural photosynthesis to quantum-information processing, where it enables two-qubit operations. For quantum information, qubits based on electronic degrees of freedom in a solid-state matrix are sensible candidates for scalable, integrated implementations. Clarifying the mechanisms underlying coherent coupling in solids is therefore an essential step in the development of such technology. Here, we demonstrate the existence of a long-range coherent coupling mechanism between individual localized excitons in a 5 nm GaAs/AlGaAs quantum well, introducing the novel tool of two-dimensional nonlinear coherent hyperspectral imaging. The coupling is shown to arise due to a biexcitonic renormalization, rather than a transition dipole (Forster) interaction. The long-range nature of the coupling is attributed to the existence of spatially extended exciton states up to the micrometre range, which are admixed in the biexciton state, as revealed in nonlinear imaging.
Fichier non déposé

Dates et versions

hal-01059112 , version 1 (29-08-2014)

Identifiants

Citer

Jacek Kasprzak, B. Patton, V. Savona, Wolfgang Langbein. Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nature Photonics, 2011, 5 (1), pp.57-63. ⟨10.1038/NPHOTON.2010.284⟩. ⟨hal-01059112⟩

Collections

UGA CNRS NEEL
142 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More