Nanometer-scale absolute laser ranging: exploiting a two-mode interference signal for high accuracy distance measurements
Résumé
Absolute distance measurement with accuracy below the micron scale is important in astronomical optical interferometry. We present here an absolute laser rangefinder which relies on the detection of a two mode interference signal. We exploit the specific signature of the signal to extract both the interferometric and synthetic phase measurements, leading to distance measurement with nanometric accuracy. A resolution of 100 pm has been achieved in 75 μs with a relatively simple laser source. Amplitude to phase coupling in the detection chains turns out to be the largest source of systematic errors. A specific detection scheme is implemented, using optical demodulation of the microwave optical signal, to reduce amplitude-to-phase related systematic errors to below the required level.
Origine | Accord explicite pour ce dépôt |
---|
Loading...