Segmentation of hyperspectral images from functional kernel density estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Segmentation of hyperspectral images from functional kernel density estimation

Résumé

The processing of hyperspectral images, seen as functions that link each pixel to a curve, has become crucial, in remote sensing applications for instance. Here we tackle the problem of segmentation of such images, by carefully combining image processing tools and functional statistics, namely a Potts model and a likelihood term based on functional kernel density estimation in a Bayesian framework, and consider possible extensions.
Fichier principal
Vignette du fichier
iwfos14_revised.pdf (507.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01032419 , version 1 (23-07-2014)

Identifiants

  • HAL Id : hal-01032419 , version 1

Citer

Laurent Delsol, Cécile Louchet. Segmentation of hyperspectral images from functional kernel density estimation. International workshop on functional and operatorial statistics, Jun 2014, Stresa, Italy. pp.101-105. ⟨hal-01032419⟩
210 Consultations
141 Téléchargements

Partager

More