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Contribute 1

Segmentation of hyperspectral images
from functional kernel density estima-
tion

Laurent Delsol, Cécile Louchet

Abstract The processing of hyperspectral images, seen as functions that link

each pixel to a curve, has become crucial, in remote sensing applications for in-

stance. Here we tackle the problem of segmentation of such images, by care-

fully combining image processing tools and functional statistics, namely a Potts

model and a likelihood term based on functional kernel density estimation in a

Bayesian framework, and consider possible extensions.

Introduction

The processing of spatial data, and the segmentation of images in particular, has

become more and more challenging and crucial in applications. Digital images,

here viewed as mappings from a discrete set Ω (the domain, typically a subset of

Z
2) to R

d, usually split into gray-level images, corresponding to d = 1 (a single

light intensity is given for each pixel), and color images, corresponding to d = 3
(red, green, blue channels usually). But this is forgetting hyperspectral images

(HSI) where d can be much higher (say, greater than 20): modern sensors can

acquire whole spectra (224 values for each spectrum for the AVIRIS images from

the NASA for instance) on reasonably sampled image grids, making the matter

analysis of the sensed scene possible (see Figure 1.1 (a) and (b)).

The segmentation of an image consists in partitioning its domain Ω into dis-

joint regions, each region corresponding to a label, or to an object. Segmenting

images (and in particular HSIs) is a crucial step before detection applications,

object identification and scene understanding [1].

A classical way to segment images (with d ≤ 3) is to optimize some simple

intraclass homogeneity criterion under a region regularity prior in a Bayesian
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2 Segmentation of hyperspectral images from fKDE

(a) (b) (c)

Figure 1.1: (a) HSI from database “Fake and real lemon” (here view of a global lumi-

nance). (b) Random sample of 100 curves of the previous HSI (each with 31 reflectance

measures corresponding to wavelength from 400 to 700 nm, with a 10 nm step). (c) 8-order

neighbor graph structure of Ω: vertical and horizontal neighbors are counted with weight

1 and diagonal neighbors with weight 1/
√

2.

framework [9]. Some other techniques aim to cluster temporal series with no

spatial information attached to them, k-means certainly being the most popu-

lar. Now, to deal with HSIs that are curves attached to a regular grid of pixels,

we must extend the previous techniques to infinite-dimensional data. Popular-

ized by [11], functional statistics have been rapidly growing as testify [5, 8] (and

references therein), and represent a natural framework for our HSI.

In order to tackle this problem of HSI segmentation, in Section 1.1 we gen-

eralize the minimal partition model (here seen as a Bayesian model) for image

segmentation, to functional data, by using functional kernel density estimation.

Section 1.2 is devoted to the algorithm and implementation details. In Sec-

tion 1.3 we show our segmentation results on synthetic and real-world data and

discuss the possible extensions.

1.1 The model

1.1.1 Notations and Bayesian segmentation

A HSI is a mapping y : Ω → R
d, with d potentially high. The vector of y at pixel

s is denoted by ys. Two pixels in Ω, say s and t, will be called neighbors (denoted

by s ∼ t) when s and t are connected in the graph defined on Ω (see Figure 1.1

(c)). Hence the edges of the graph are the pairs {s, t} such that s ∼ t.
Segmenting y amounts to find a function x : Ω → L, where L is a finite set of

labels, such that x “fits well” with the content of y. In this paper, we will focus on

the Bayesian point of view, where the desired segmentation x̂ maximizes some

probability given the original image y. Using Bayes’ rule, x̂ satisfies

x̂ = argmax
x

P (X = x|Y = y) = argmax
x

fY |X=x(y)P (X = x) (1.1)

where fY |X=x, a conditional p.d.f. (w.r.t. some reference measure assumed to

exist), and P (X = x), representing the probability measure of X, are meant to

be modeled in the next paragraphs.
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1.1.2 Minimal partition model, independence assumption

A classical way to segment images (with low d) uses the minimal partition model

[9], which we present here in a non-conventional way, but more suitable to a

statistics community.

In the minimal partition model, the term P (X = x) in (1.1) models the confi-

dence in a segmentation x, forgetting about the image y; it is therefore natural

to model P (X = x) as a regularizing term, favoring segmentations with big con-

nected regions and smooth boundaries. This is tracted by a generalization of

Ising model to multilabel framework, known as Potts random field [10]

P (X = x) =
1

Z
exp

(

− β
∑

s,t∈Ω

γs,t1xs 6=xt

)

, (1.2)

where Z is a universal normalizing factor, and γs,t is the weight of the edge

{s, t} (1 if s and t are horizontal or vertical neighbors, 1/
√
2 if they are diagonal

neighbors, and 0 if they are not neighbors). The potential of this Gibbs-Markov

field can be interpreted as the length of all the boundaries between the regions

defined by x, weighted by a factor β > 0.

Endowing R
d with the usual ℓ2-norm, the minimal partition model sets the

other term fY |X=x(y) in (1.1) as

f̂Y |X=x(y) =
1

Z
exp

(

− 1

2σ2
‖y − yx‖2

)

, (1.3)

where for each pixel s, yxs is the mean of y on the region defined by x containing s.
Hence (1.3) models y as a noisy version of x with white additive Gaussian noise

with variance σ2. This assumption is very strong and we relax it by the only

assumption that the pixels are conditionally independent, written

fY |X=x(y) =
∏

s∈Ω

fYs|Xs=xs
(ys). (1.4)

This still models y as a noise corrupting x, but now the noise at pixel s is not

necessarily Gaussian nor additive and can be estimated nonparametrically.

1.1.3 How to move to hyperspectral images

We assume that the curves (ys)s∈Ω live in a functional space E , able to enforce

more regularity than R
d. After Ferraty and Vieu’s work [6] on the estimation of

the regression operator on a functional variable, many kernel estimators have

been adapted to the case of functional data (see [5, 7] for instance). More little

has been done on curve density estimation, due to theoretical problems linked to

its definition, and to the difficulty to build a (pseudo-) estimator. Here we use the

seminal work of [2] stating that

f̂(y) =
1

nRy(h, δ, µ)

n
∑

i=1

K

(

δ(Yi, y)

hn

)

(1.5)

is an estimator of the density of Y (w.r.t. a reference measure µ), where (Yi)1≤i≤n ∈
En is the sample, K is a kernel with support [0, 1], hn is a smoothing parameter,

and δ is any semimetric defined on E . The semimetric can be chosen according
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to the nature of data ; furthermore the normalizing factor Ry(h, δ, µ) has a closed

theoretical form but remains hard to evaluate from the data. Note that recent

advances on curve density estimation could also be used [3, 4].

Equation 1.5 can be used to estimate fYs|Xs=xs
(ys) in (1.4). We assume that

the density fYs|Xs=xs
(ys) is learnt from the all (yt) for which xt = xs, which leads

to

f̂Ys|Xs=xs
(ys) =

1

#{t : xt = xs}Rys
(h, δ, µ)

∑

t:xt=xs

K

(

δ(yt, ys)

hn

)

. (1.6)

The proposed segmentation x̂ = argmaxx P (X = x)f̂Y |X=x(y), with P (X = x) as

in (1.2) and f̂Y |X=x(y) as in (1.4) and (1.6), makes no use of the terms Rys
(h, δ, µ)

in the maximization process and is hence computable.

1.2 Algorithm

In order to compute x̂, we could apply graph-cut methods which have the ad-

vantage of being exact. However the computational burden can be avoided by

using an iterated conditional mode (ICM) algorithm initialized by a reasonable

segmentation. The chosen initialization is the multivariate k-means solution,

corresponding to the minimal partition model with β = 0 and a Gaussian kernel.

The principle of the ICM algorithm is the local optimization of the poste-

rior probability: a pixel is chosen in the domain (here following a deterministic

sweep) and its value is updated by the label that maximizes the posterior density,

given the rest of the image. Let us recall that the number of labels is finite and

it then suffices to try them all. The process is repeated until the segmentation

becomes stationary; the limit is a local maximum of the posterior probability.

In practice the proposed algorithm only requires around 20-100 iterations to

reach convergence.

1.3 Experiments and discussion

First we consider a synthetic HSI where a 100-point curve is drawn at each pixel

obeying to a certain distribution depending only on the region’s label. In the first

row of Figure 1.2, the HSI is depicted as a frame, subsampled by a factor 20.

In the second row, the target distribution is compared to the k-means clustering

result (yielding 65.70% of misclassified pixels for 6 classes), a regularized version

of the latter obtained by majority rule on weighted neighborhoods (55.19% of mis-

classified pixels), and then our Maximum A Posteriori approach (yielding 0.21%
misclassified pixels, resp. 0.24%) for two possible initializations (k-means, resp.

k-means computed on only 10 random pixels), which used an Epanechnikov ker-

nel K, a usual ℓ2-metric and (h, β) = (0.14, 0.35). The third row gives the behavior

of our algorithm throughout the iterations.

In Figure 1.3, our method is tested on an indoor HSI of fake and true lemon

slices. Using the Epanechnikov kernel and (h, β) = (6000, 10) gives an unsatis-

fying segmentation: many pixels of the true lemon’s pulp are classified as fake

lemon’s pulp. But we can observe from the spectra that their derivatives are
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11th frame 31th frame 51th frame 71th frame 91 frame

(a) target (b) k-means (c) k-m. reg. (d) our’s (e) our’s

1st iter. 6th iter. 11th iter. 16th iter. 21th iter.

Figure 1.2: Synthetic HSI segmentation. First row: frames from the 100-frame movie

representing the HSI. Second row: (a) target segmentation; (b) segmentation by k-means

with 6 classes; (c) previous segmentation regularized by local majority rule; (d) our result

starting from k-means (b); (e) our result starting from k-means on only 10 random pixels

(similar result). Third row: initialization of our method by k-means (b) and samples of

some iterations. The algorithm stops at iteration 23 where it becomes stationary.

2nd frame 7th frame 12th frame 17th frame 22th frame

2nd frame 7th frame 12th frame 17th frame 22th frame

(a) k-means (b) our’s (c) k-means (d) our’s

Figure 1.3: Indoor HSI segmentation. First row: frames from the 31-frame movie rep-

resenting the HSI. Second row: (saturated) frames from the movie representing the HSI

with the derivatives of the curves. Note that the lemon slices are visually better dis-

sociated in this derivative representation. Third row: (a) k-means on raw data, (b) our

method initialized with (a) with usual ℓ2-metric, (c) k-means on the derivative of HSI, (d)

our method initialized with (c) with δ = ℓ2-metric on the first derivatives.
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potentially much more discriminative than the basic spectra. In Figure 1.3 we

choose for the semimetric δ(yt, ys) the ℓ2-distance between the derivatives of yt
and ys with (h, β) = (20000, 10) and see that this semimetric is able to discrimi-

nate the true and the fake lemon almost perfectly. Thus the proposed method is

flexible enough to segment natural HSIs in a non-controlled light environment.

To conclude, we proposed a relevant method to segment HSIs combining tools

from functional statistics and from image processing and our numerical experi-

ments are satisfying. The automated selection of parameters β and h is still in

question, as well as some asymptotic consistency result for our segmentation.

The extension of our method to gray-level image segmentation, by assigning to

each pixel a curve that codes the structure of its neighborhood, is promising. Our

method could also be linked to other methods in spatial functional statistics.
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