Transport proofs of weighted Poincaré inequalities for log-concave distributions
Résumé
We prove, using optimal transport tools, weighted Poincar'e inequalities for log-concave random vectors satisfying some centering conditions. We recover by this way similar results by Klartag and Barthe-Cordero-Erausquin for log-concave random vectors with symmetries. In addition, we prove that the variance conjecture is true for increments of log-concave martingales.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...