Transport proofs of weighted Poincaré inequalities for log-concave distributions - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2017

Transport proofs of weighted Poincaré inequalities for log-concave distributions

Résumé

We prove, using optimal transport tools, weighted Poincar'e inequalities for log-concave random vectors satisfying some centering conditions. We recover by this way similar results by Klartag and Barthe-Cordero-Erausquin for log-concave random vectors with symmetries. In addition, we prove that the variance conjecture is true for increments of log-concave martingales.
Fichier principal
Vignette du fichier
variance6.pdf (269.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01023065 , version 1 (11-07-2014)

Identifiants

Citer

Dario Cordero-Erausquin, Nathael Gozlan. Transport proofs of weighted Poincaré inequalities for log-concave distributions. Bernoulli, 2017, 23 (1), pp.134 - 158. ⟨hal-01023065⟩
142 Consultations
277 Téléchargements

Altmetric

Partager

More