Even faster integer multiplication - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Even faster integer multiplication

David Harvey
  • Function : Author
  • PersonId : 958313
Grégoire Lecerf
MAX

Abstract

We give a new proof of Fürer's bound for the cost of multiplying n-bit integers in the bit complexity model. Unlike Fürer, our method does not require constructing special coefficient rings with ''fast'' roots of unity. Moreover, we establish the improved bound O(n log n K^(log^∗ n)) with K=8. We show that an optimised variant of Fürer's algorithm achieves only K=16, suggesting that the new algorithm is faster than Fürer's by a factor of 2^(log^∗ n). Assuming standard conjectures about the distribution of Mersenne primes, we give yet another algorithm that achieves K=4.
Fichier principal
Vignette du fichier
mul3.pdf (558.43 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01022749 , version 1 (15-07-2014)
hal-01022749 , version 2 (11-02-2015)

Identifiers

  • HAL Id : hal-01022749 , version 2

Cite

David Harvey, Joris van Der Hoeven, Grégoire Lecerf. Even faster integer multiplication. 2014. ⟨hal-01022749v2⟩
359 View
491 Download

Share

Gmail Facebook Twitter LinkedIn More