Even faster integer multiplication - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Even faster integer multiplication

David Harvey
  • Fonction : Auteur
  • PersonId : 958313
Grégoire Lecerf
MAX

Résumé

We give a new proof of Fürer's bound for the cost of multiplying n-bit integers in the bit complexity model. Unlike Fürer, our method does not require constructing special coefficient rings with ''fast'' roots of unity. Moreover, we establish the improved bound O(n log n K^(log^∗ n)) with K=8. We show that an optimised variant of Fürer's algorithm achieves only K=16, suggesting that the new algorithm is faster than Fürer's by a factor of 2^(log^∗ n). Assuming standard conjectures about the distribution of Mersenne primes, we give yet another algorithm that achieves K=4.
Fichier principal
Vignette du fichier
mul3.pdf (558.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01022749 , version 1 (15-07-2014)
hal-01022749 , version 2 (11-02-2015)

Identifiants

  • HAL Id : hal-01022749 , version 2

Citer

David Harvey, Joris van der Hoeven, Grégoire Lecerf. Even faster integer multiplication. 2014. ⟨hal-01022749v2⟩
392 Consultations
666 Téléchargements

Partager

More