Surface Realisation from Knowledge-Bases
Résumé
We present a simple, data-driven approach to generation from knowledge bases (KB). A key feature of this approach is that grammar induction is driven by the extended domain of locality principle of TAG (Tree Adjoining Grammar); and that it takes into account both syntactic and semantic information. The resulting extracted TAG includes a unification based semantics and can be used by an existing surface realiser to generate sentences from KB data. Experimental evaluation on the KBGen data shows that our model outperforms a data-driven generate-and-rank approach based on an automatically induced probabilistic grammar; and is comparable with a handcrafted symbolic approach.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...