Surface Realisation from Knowledge-Bases - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Surface Realisation from Knowledge-Bases

Résumé

We present a simple, data-driven approach to generation from knowledge bases (KB). A key feature of this approach is that grammar induction is driven by the extended domain of locality principle of TAG (Tree Adjoining Grammar); and that it takes into account both syntactic and semantic information. The resulting extracted TAG includes a unification based semantics and can be used by an existing surface realiser to generate sentences from KB data. Experimental evaluation on the KBGen data shows that our model outperforms a data-driven generate-and-rank approach based on an automatically induced probabilistic grammar; and is comparable with a handcrafted symbolic approach.
Fichier principal
Vignette du fichier
acl14-gyawali.pdf (123.13 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01021916 , version 1 (09-07-2014)

Identifiants

  • HAL Id : hal-01021916 , version 1

Citer

Bikash Gyawali, Claire Gardent. Surface Realisation from Knowledge-Bases. the 52nd Annual Meeting of the Association for Computational Linguistics, Jun 2014, Baltimore, United States. pp.424-434. ⟨hal-01021916⟩
160 Consultations
311 Téléchargements

Partager

More