Laser-based detection and tracking moving objects using data-driven Markov chain Monte Carlo - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Laser-based detection and tracking moving objects using data-driven Markov chain Monte Carlo

Résumé

We present a method of simultaneous detection and tracking moving objects from a moving vehicle equipped with a single layer laser scanner. A model-based approach is introduced to interpret the laser measurement sequence by hypotheses of moving object trajectories over a sliding window of time. Knowledge of various aspects including object model, measurement model, motion model are integrated in one theoretically sound Bayesian framework. The data-driven Markov chain Monte Carlo (DDMCMC) technique is used to sample the solution space effectively to find the optimal solution. Experiments and results on real-life data of urban traffic show promising results.
Fichier principal
Vignette du fichier
Vu_ICRA09_DDMCMCTracking.pdf (361.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01020868 , version 1 (08-07-2014)

Identifiants

Citer

Trung-Dung Vu, Olivier Aycard. Laser-based detection and tracking moving objects using data-driven Markov chain Monte Carlo. Robotics and Automation, 2009. ICRA '09. IEEE International Conference on, May 2009, Kobe, Japan. pp.3800 - 3806, ⟨10.1109/ROBOT.2009.5152805⟩. ⟨hal-01020868⟩
368 Consultations
1437 Téléchargements

Altmetric

Partager

More