Joint segmentation, calling, and normalization of multiple CGH profiles - Archive ouverte HAL Access content directly
Journal Articles Biostatistics Year : 2011

Joint segmentation, calling, and normalization of multiple CGH profiles

Mark Hoebeke
Baba Thiam
Stephane Robin


The statistical analysis of array comparative genomic hybridization (CGH) data has now shifted to the joint assessment of copy number variations at the cohort level. Considering multiple profiles gives the opportunity to correct for systematic biases observed on single profiles, such as probe GC content or the so-called "wave effect." In this article, we extend the segmentation model developed in the univariate case to the joint analysis of multiple CGH profiles. Our contribution is multiple: we propose an integrated model to perform joint segmentation, normalization, and calling for multiple array CGH profiles. This model shows great flexibility, especially in the modeling of the wave effect that gives a likelihood framework to approaches proposed by others. We propose a new dynamic programming algorithm for break point positioning, as well as a model selection criterion based on a modified bayesian information criterion proposed in the univariate case. The performance of our method is assessed using simulated and real data sets. Our method is implemented in the R package cghseg.
Fichier principal
Vignette du fichier
2011LebarbierBiostat_1.pdf (503.08 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01019859 , version 1 (29-05-2020)



Franck Picard, Mark Hoebeke, Guillem Rigaill, Baba Thiam, Stephane Robin. Joint segmentation, calling, and normalization of multiple CGH profiles. Biostatistics, 2011, 12 (3), pp.413-428. ⟨10.1093/biostatistics/kxq076⟩. ⟨hal-01019859⟩
93 View
41 Download



Gmail Mastodon Facebook X LinkedIn More