The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam. - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2014

The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam.

Kais Ammari
Mouez Dimassi
  • Fonction : Auteur
  • PersonId : 953438

Résumé

We study the best decay rate of the solutions of a damped Euler-Bernoulli beam equation with a homogeneous Dirichlet boundary conditions. We show that the fastest decay rate is given by the supremum of the real part of the spectrum of the infinitesimal generator of the underlying semigroup, if the damping coefficient is in $L^\infty(0,1)$.

Dates et versions

hal-01018783 , version 1 (05-07-2014)

Identifiants

Citer

Kais Ammari, Mouez Dimassi, Maher Zerzeri. The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam.. Journal of Differential Equations, 2014, 257 (9), pp.3501-3520. ⟨10.1016/j.jde.2014.06.020⟩. ⟨hal-01018783⟩
209 Consultations
0 Téléchargements

Altmetric

Partager

More