Functional Poisson approximation in Rubinstein distance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Functional Poisson approximation in Rubinstein distance

Résumé

A Poisson or a binomial process on an abstract state space and a symmetric function $f$ acting on $k$-tuples of its points are considered. They induce a point process on the target space of $f$. The main result is a functional limit theorem which provides an upper bound for an optimal transportation distance between the image process and a Poisson process on the target space. The technical background are a version of Stein's method for Poisson process approximation, a Glauber dynamic representation for the Poisson process and the Malliavin formalism. As applications of the main result, error bounds for approximations of U-statistics by Poisson, compound Poisson and stable random variables are derived and examples from stochastic geometry are investigated.
Fichier principal
Vignette du fichier
PPPConv9.pdf (331.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01010967 , version 1 (21-06-2014)
hal-01010967 , version 2 (24-02-2015)

Identifiants

  • HAL Id : hal-01010967 , version 1

Citer

Laurent Decreusefond, Matthias Schülte, Christoph Thäle. Functional Poisson approximation in Rubinstein distance. 2014. ⟨hal-01010967v1⟩
1086 Consultations
336 Téléchargements

Partager

More