Performance evaluation of max-dmin precoding in impulsive noise for train-to-wayside communications in subway tunnels
Abstract
This paper addresses the performance evaluation of the multiple input multiple output (MIMO) precoding technique, referred to as max-dmin precoding, over fading channel with impulsive noise in a railway tunnel. Measurements showed that the received signal at the antenna on the moving train roof near the catenary suffers from electromagnetic noise interference (EMI). This implies that the traditional Gaussian noise model is no longer valid and an impulsive noise model has to be considered. Based on this observation, we investigate the performance of the max-dmin MIMO precoding technique, based on the minimum distance criterion, in an impulsive noise modeled as an ?-stable distribution. The main contributions are (i) a general approximation of the error probability of the max-dmin precoder, in the presence of Cauchy noise for an nr ? nt MIMO system, and (ii) the performance evaluation, in terms of bit error rate, of a complete communication system, considering a MIMO channel model in tunnel and impulsive noise, both obtained by measurements. Two soft detection techniques, providing the soft decisions to the channel decoder, are proposed based on the approximation of the probability density function of the impulsive noise by either a Gaussian or a Cauchy law.
Origin | Publisher files allowed on an open archive |
---|