Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula

Résumé

We consider the problem of explicitly computing dimensions of spaces of automorphic or modular forms in level one, for a split classical group $\mathbf{G}$ over $\mathbb{Q}$ such that $\mathbf{G}(\R)$ has discrete series. Our main contribution is an algorithm calculating orbital integrals for the characteristic function of $\mathbf{G}(\mathbb{Z}_p)$ at torsion elements of $\mathbf{G}(\mathbb{Q}_p)$. We apply it to compute the geometric side in Arthur's specialisation of his invariant trace formula involving stable discrete series pseudo-coefficients for $\mathbf{G}(\mathbb{R})$. Therefore we explicitly compute the Euler-Poincaré characteristic of the level one discrete automorphic spectrum of $\mathbf{G}$ with respect to a finite-dimensional representation of $\mathbf{G}(\mathbb{R})$. For such a group $\mathbf{G}$, Arthur's endoscopic classification of the discrete spectrum allows to analyse precisely this Euler-Poincaré characteristic. For example one can deduce the number of everywhere unramified automorphic representations $\pi$ of $\mathbf{G}$ such that $\pi_{\infty}$ is isomorphic to a given discrete series representation of $\mathbf{G}(\mathbb{R})$. Dimension formulae for the spaces of vector-valued Siegel modular forms are easily derived.
Fichier principal
Vignette du fichier
dimtrace.pdf (775.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01007666 , version 1 (16-06-2014)

Identifiants

Citer

Olivier Taïbi. Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula. 2014. ⟨hal-01007666⟩
256 Consultations
152 Téléchargements

Altmetric

Partager

More