Higher-order effective modelling of periodic heterogeneous beams - Part I : Asymptotic expansion method - Archive ouverte HAL
Article Dans Une Revue International Journal of Solids and Structures Année : 2001

Higher-order effective modelling of periodic heterogeneous beams - Part I : Asymptotic expansion method

Résumé

This paper is concerned with the elastostatic behavior of heterogeneous beams with a cross-section and elastic moduli varying periodically along the beam axis. By using the two-scale asymptotic expansion method, the interior solution is formally derived up to an arbitrary desired order. In particular, this method is shown to constitute a Systematic way of improving Bernoulli's theory by including higher-order terms, without any assumption, in contrast to Timoshenko's theory or other refined beam models. Moreover, the incompatibility between the interior asymptotic expansions and the real boundary conditions is emphasized, and the necessity of a specific treatment of edge effects is thus underlined.
Fichier principal
Vignette du fichier
NBPC.pdf (268.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01006929 , version 1 (21-11-2016)

Licence

Identifiants

Citer

Natacha Buannic, Patrice Cartraud. Higher-order effective modelling of periodic heterogeneous beams - Part I : Asymptotic expansion method. International Journal of Solids and Structures, 2001, 38 (40 41), pp.7139-7161. ⟨10.1016/S0020-7683(00)00422-4⟩. ⟨hal-01006929⟩
188 Consultations
332 Téléchargements

Altmetric

Partager

More