Estimation of convolution in the model with noise - Archive ouverte HAL
Article Dans Une Revue Journal of Nonparametric Statistics Année : 2015

Estimation of convolution in the model with noise

Fabienne Comte
Gwennaelle Mabon
  • Fonction : Auteur
  • PersonId : 957220

Résumé

We investigate the estimation of the $\ell$-fold convolution of the density of an unobserved variable $X$ from $n$ i.i.d. observations of the convolution model $Y=X+\varepsilon$. We first assume that the density of the noise $\varepsilon$ is known and define nonadaptive estimators, for which we provide bounds for the mean integrated squared error (MISE). In particular, under some smoothness assumptions on the densities of $X$ and $\varepsilon$, we prove that the parametric rate of convergence $1/n$ can be attained. Then we construct an adaptive estimator using a penalization approach having similar performances to the nonadaptive one. The price for its adaptivity is a logarithmic term. The results are extended to the case of unknown noise density, under the condition that an independent noise sample is available. Lastly, we report a simulation study to support our theoretical findings.
Fichier principal
Vignette du fichier
ConvNoiseSoum.pdf (501.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01003005 , version 1 (08-06-2014)

Identifiants

  • HAL Id : hal-01003005 , version 1

Citer

Christophe Chesneau, Fabienne Comte, Gwennaelle Mabon, Fabien Navarro. Estimation of convolution in the model with noise. Journal of Nonparametric Statistics, 2015, 27 (3), pp.286-315. ⟨hal-01003005⟩
748 Consultations
539 Téléchargements

Partager

More