Infinitesimal invariants for cycles modulo algebraic equivalence and 1-cycles on Jacobians - Archive ouverte HAL
Article Dans Une Revue Algebraic Geometry Année : 2014

Infinitesimal invariants for cycles modulo algebraic equivalence and 1-cycles on Jacobians

Claire Voisin

Résumé

We construct an infinitesimal invariant for cycles in a family with cohomology class in the total space lying in a given level of the Leray filtration. This infinitesimal invariant detects cycles modulo algebraic equivalence in the fibers. We apply this construction to the Ikeda family, which gives optimal results for the Beauville decomposition of the 1-cycle of a very general plane curve in its Jacobian.

Dates et versions

hal-01002964 , version 1 (07-06-2014)

Identifiants

Citer

Claire Voisin. Infinitesimal invariants for cycles modulo algebraic equivalence and 1-cycles on Jacobians. Algebraic Geometry, 2014, 1 (2), pp.140-165. ⟨10.14231/AG-2014-008⟩. ⟨hal-01002964⟩
123 Consultations
0 Téléchargements

Altmetric

Partager

More