Accurate and Effective Latent Concept Modeling for Ad Hoc Information Retrieval - Archive ouverte HAL Access content directly
Journal Articles Document numérique - Revue des sciences et technologies de l'information. Série Document numérique Year : 2014

Accurate and Effective Latent Concept Modeling for Ad Hoc Information Retrieval

(1) , (2) , (3)
1
2
3

Abstract

A keyword query is the representation of the information need of a user, and is the result of a complex cognitive process which often results in under-specification. We propose an unsupervised method namely Latent Concept Modeling (LCM) for mining and modeling latent search concepts in order to recreate the conceptual view of the original information need. We use Latent Dirichlet Allocation (LDA) to exhibit highly-specific query-related topics from pseudo-relevant feedback documents. We define these topics as the latent concepts of the user query. We perform a thorough evaluation of our approach over two large ad-hoc TREC collections. Our findings reveal that the proposed method accurately models latent concepts, while being very effective in a query expansion retrieval setting.
Fichier principal
Vignette du fichier
DN.pdf (218.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01002716 , version 1 (06-06-2014)

Identifiers

Cite

Romain Deveaud, Eric Sanjuan, Patrice Bellot. Accurate and Effective Latent Concept Modeling for Ad Hoc Information Retrieval. Document numérique - Revue des sciences et technologies de l'information. Série Document numérique, 2014, pp.61-84. ⟨10.3166/DN.17.1.61-84⟩. ⟨hal-01002716⟩
602 View
2833 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More