The incompressible Navier-Stokes equations on non-compact manifolds
Résumé
We shall prove dispersive and smoothing estimates for Bochner type laplacians on some non-compact Riemannian manifolds with negative Ricci curvature, in particular on hyperbolic spaces. These estimates will be used to prove Fujita-Kato type theorems for the incompressible Navier-Stokes equations. We shall also discuss the uniqueness of Leray weak solutions in the two dimensional case.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...