Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success
Résumé
Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.