Characterization of 3D surface topography in 5 axis milling
Abstract
Within the context of 5-axis free-form machining, CAM software offers various modes of tool-path generation, depending on the geometry of the surface to be machined. Therefore, as the manufactured surface quality results from the choice of the machining strategy and machining parameters, the prediction of surface roughness in function of the machining conditions is an important issue in 5-axis machining. The objective of this paper is to propose a simulation model of material removal in 5- axis based on the N-buffer method and integrating the Inverse Kinematics Transformation. The tooth track is linked to the velocity giving the surface topography resulting from actual machining conditions. The model is assessed thanks to a series of sweeping over planes according to various tool axis orientations and cutting conditions. 3D surface topography analyses are performed through the new 3D roughness parameters proposed by recent standards.
Origin | Files produced by the author(s) |
---|
Loading...