Eigenvalues of the Neumann-Poincaré operator of 2 inclusions with contact of order m : a numerical study - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Mathematics -International Edition- Année : 2018

Eigenvalues of the Neumann-Poincaré operator of 2 inclusions with contact of order m : a numerical study

Eric Bonnetier
  • Fonction : Auteur
  • PersonId : 853719
Faouzi Triki
  • Fonction : Auteur
  • PersonId : 1040780
  • IdRef : 223414247

Résumé

In a composite medium that contains close-to-touching conducting inclusions, the pointwise values of the gradient of the voltage potential may blow up as the distance δ between some inclusions tends to 0 and as the conductivity contrast degenerates. In a recent paper [10], we showed that the blow-up rate of the gradient is related to how the eigenvalues of the associated Neumann-Poincaré operator converge to ±1/2 as δ to 0, and on the regularity of the contact. Here, we consider two connected 2-D inclusions, at a distance δ > 0 from each other. When δ = 0, the contact beteween the inclusions is of order m ≥ 2. We numerically determine the asymptotic behavior of the eigenvalues to the Neumann-Poincaré operator, in terms of δ and m, and we check that we recover the estimates obtained in [10].

Dates et versions

hal-00997358 , version 1 (28-05-2014)

Identifiants

Citer

Eric Bonnetier, Chun-Hsiang Tsou, Faouzi Triki. Eigenvalues of the Neumann-Poincaré operator of 2 inclusions with contact of order m : a numerical study. Journal of Computational Mathematics -International Edition-, 2018, 36 (1), pp.17-28. ⟨10.4208/jcm.1607-m2016-0543⟩. ⟨hal-00997358⟩
261 Consultations
0 Téléchargements

Altmetric

Partager

More