Validation of Tropospheric Water Vapor as Measured by the 183-GHz HAMSTRAD Radiometer Over the Pyrenees Mountains, France - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Geoscience and Remote Sensing Année : 2010

Validation of Tropospheric Water Vapor as Measured by the 183-GHz HAMSTRAD Radiometer Over the Pyrenees Mountains, France

Résumé

The H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers (HAMSTRAD) 183-GHz radiometer has been developed to measure vertical profiles of tropospheric water vapor above Dome C (Concordia station), Antarctica ( 75?06'S, 123?21'E, 3233 m asml), which is an extremely cold and dry environment, over decades. Prior to its installation at Dome C in January 2009, the instrument was deployed at the Pic du Midi (PdM) station ( 42?56'N, 0?08'E, 2877 m asml) in the Pyrenees Mountains, France, over the period covering February-June 2008. Vertical profiles of absolute humidity and integrated water vapor (IWV) as measured by HAMSTRAD were compared with measurements from radiosondes launched in three different sites: Lannemezan (43?07'N, 0?23'E, 610 m asml), France (~30 km northeast from PdM), Bordeaux-Me?rignac Airport (44?49'N, 0?42'W, 50 m asml), France ( ~ 220 km northwest from PdM), and Zaragoza (41?39'N, 0?53'W, 263 m asml), Spain ( ~170 km southwest from PdM). The validation process also used the vertical profiles of tropospheric H2O as measured by the nadir-viewing infrared atmospheric sounding interferometer (IASI) instrument aboard the MetOp-A space platform. The temporal evolution of the HAMSTRAD H2O measurements above the PdM station is very consistent with IASI, sonde, and in situ measurements, tracking the same atmosphere from a dry period in February to a wet period in June. HAMSTRAD showed unrealistic values in periods of well-established snow tempest. While the sensitivity of the HAMSTRAD measurements tends to be degraded 6 km above the altitude of the instrument, namely, above 8877 m asml, the HAMSTRAD measurements seem reasonable at the uppermost retrieval level (namely, 10 km, 12 877 m asml). In May, the wet periods are systematically showing a good agreement between sonde and HAMSTRAD IWV fields and H2O below 6777 m asml but a dry bias of IASI by more than 4-kg m-2 IWV, where- - as outside of these periods, the three data sets behave consistently. Since the best results (mean, standard deviation, bias, and correlation) are obtained when the HAMSTRAD radiometer operates in the very dry conditions of February, namely, in dryness conditions comparable to Dome C summertime values, we are very confident in the optimal use of the instrument when deployed in Antarctica.
Fichier principal
Vignette du fichier
Ricaud2010.pdf (1.52 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00995287 , version 1 (10-09-2021)

Licence

Paternité

Identifiants

Citer

P. Ricaud, Benjamin Gabard, Solène Derrien, Jean-Luc Attié, Thomas Rose, et al.. Validation of Tropospheric Water Vapor as Measured by the 183-GHz HAMSTRAD Radiometer Over the Pyrenees Mountains, France. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (5), pp.2189-2203. ⟨10.1109/TGRS.2009.2037920⟩. ⟨hal-00995287⟩
82 Consultations
47 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More