Estimation of the jump size density in a mixed compound Poisson process - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Estimation of the jump size density in a mixed compound Poisson process

Fabienne Comte
Céline Duval
  • Fonction : Auteur
  • PersonId : 947412
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 836340
Johanna Kappus
  • Fonction : Auteur
  • PersonId : 956563

Résumé

Consider a mixed compound process $Y(t)=\sum_{i=1}^{N(\Lambda t)}\xi_i$ where $N$ is a Poisson process with intensity 1, $\Lambda$ a positive random variable, $(\xi_i)$ a sequence of {\em i.i.d.} random variables with density $f$ and $(N,\Lambda,(\xi_i))$ are independent. In this paper, we study nonparametric estimators of $f$ by specific deconvolution methods. Assuming that $\Lambda$ has exponential distribution with unknown expectation, we propose two types of estimators based on the observation of an {\em i.i.d.} sample $(Y_j(\Delta))_{1\leq j\leq n}$ for $\Delta$ a given time. One strategy is for fixed $\Delta$, the other for small $\Delta$ (with large $n\Delta$). Risks bounds and adaptive procedures are provided. Then, with no assumption on the distribution of $\Lambda$, we propose a nonparametric estimator of $f$ based on the joint observation $(N_j(\Lambda_j\Delta), Y_j(\Delta))_{1\leq j\leq n}$. Risks bounds are provided leading to unusual rates. The methods are implemented and compared via simulations.
Fichier principal
Vignette du fichier
MixedCompoundSubm.pdf (7.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00995037 , version 1 (22-05-2014)
hal-00995037 , version 2 (14-10-2014)

Identifiants

  • HAL Id : hal-00995037 , version 1

Citer

Fabienne Comte, Céline Duval, Valentine Genon-Catalot, Johanna Kappus. Estimation of the jump size density in a mixed compound Poisson process. 2014. ⟨hal-00995037v1⟩
483 Consultations
319 Téléchargements

Partager

More