Computing necessary integrability conditions for planar parametrized homogeneous potentials - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

Computing necessary integrability conditions for planar parametrized homogeneous potentials

Alin Bostan
  • Function : Author
  • PersonId : 831654
Mohab Safey El Din

Abstract

Let $V\in\mathbb{Q}(i)(\a_1,\dots,\a_n)(\q_1,\q_2)$ be a rationally parametrized planar homogeneous potential of homogeneity degree $k\neq -2, 0, 2$. We design an algorithm that computes polynomial \emph{necessary} conditions on the parameters $(\a_1,\dots,\a_n)$ such that the dynamical system associated to the potential $V$ is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree $9$. Another striking application is the first complete proof of the non-integrability of the \emph{collinear three body problem}.
Fichier principal
Vignette du fichier
BoCoSa14-hal.pdf (215.99 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission
Loading...

Dates and versions

hal-00994116 , version 1 (21-05-2014)

Identifiers

Cite

Alin Bostan, Thierry Combot, Mohab Safey El Din. Computing necessary integrability conditions for planar parametrized homogeneous potentials. ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. pp.67-74, ⟨10.1145/2608628.2608662⟩. ⟨hal-00994116⟩
204 View
161 Download

Altmetric

Share

Gmail Facebook X LinkedIn More