Transience Bounds for Distributed Algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Transience Bounds for Distributed Algorithms

Résumé

A large variety of distributed systems, like some classical synchronizers, routers, or schedulers, have been shown to have a periodic behavior after an initial transient phase (Malka and Rajsbaum, WDAG 1991). In fact, each of these systems satisfies recurrence relations that turn out to be linear as soon as we consider max-plus or min-plus algebra. In this paper, we give a new proof that such systems are eventually periodic and a new upper bound on the length of the initial transient phase. Interestingly, this is the first asymptotically tight bound that is linear in the system size for various classes of systems. Another significant benefit of our approach lies in the straightforwardness of arguments: The proof is based on an easy convolution lemma borrowed from Nachtigall (Math. Method. Oper. Res. 46) instead of purely graph-theoretic arguments and involved path reductions found in all previous proofs.
Fichier principal
Vignette du fichier
paper.pdf (160.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00993785 , version 1 (20-05-2014)

Identifiants

Citer

Bernadette Charron-Bost, Matthias Függer, Thomas Nowak. Transience Bounds for Distributed Algorithms. FORMATS 2013 - 11th International Conference Formal Modeling and Analysis of Timed Systems, Aug 2013, Buenos Aires, Argentina. pp.77-90, ⟨10.1007/978-3-642-40229-6_6⟩. ⟨hal-00993785⟩
459 Consultations
181 Téléchargements

Altmetric

Partager

More