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Abstract. A large variety of distributed systems, like some classical
synchronizers, routers, or schedulers, have been shown to have a periodic
behavior after an initial transient phase (Malka and Rajsbaum, WDAG
1991). In fact, each of these systems satisfies recurrence relations that
turn out to be linear as soon as we consider max-plus or min-plus algebra.
In this paper, we give a new proof that such systems are eventually peri-
odic and a new upper bound on the length of the initial transient phase.
Interestingly, this is the first asymptotically tight bound that is linear in
the system size for various classes of systems. Another significant benefit
of our approach lies in the straightforwardness of arguments: The proof
is based on an easy convolution lemma borrowed from Nachtigall (Math.
Method. Oper. Res. 46) instead of purely graph-theoretic arguments and
involved path reductions found in all previous proofs.

1 Introduction

A large variety of distributed systems, like the network synchronizers in [13], or
the distributed link reversal algorithms [22] which can be used for routing [14],
scheduling [4], distributed queuing [21, 2], or resource allocation [7] have been
shown to have a periodic behavior after an initial transient phase. Each of these
systems satisfies a recurrence relation [16] that turns out to be linear as soon as
one considers max-plus or min-plus algebra. Indeed, the fundamental theorem
in these algebras—an analog of the Perron-Frobenius theorem—shows that any
linear system with irreducible system matrix is periodic from some index, called
the transient of the system. For all the above mentioned systems, the study of
the transient plays a key role in characterizing performances: For example, in the
case of link reversal routing, the system transient is equal to the time complexity
of the routing algorithm.

Hartmann and Arguelles [17] have shown that the transients of linear sys-
tems are computable in polynomial time. However, their algorithms provide no
analysis of the transient phase, and do not hint at the parameters that influence
system transients. Conversely, upper bounds involving these parameters help
to predict the duration of the transient phase, and to define strategies to re-
duce transients during system design. From both numerical and methodological
viewpoints, it is therefore important to determine accurate transience bounds.



The problem of bounding the transients has already been studied [1, 5, 8, 13,
17, 20]. A polynomial bound has been established by Even and Rajsbaum [13]
for a large class of synchronizers in the specific case of integer delays, and Hart-
mann and Arguelles [17] have established an upper bound on the transients of
general linear systems. More recently, Charron-Bost et al. [8] have given two new
transience bounds, called the repetitive and the explorative bound, which both
improve on the Even and Rajsbaum’s synchronizer bound, and are incomparable
with Hartmann and Arguelles’ bound. In each of the above mentioned works [13,
17, 8], the approach is graph-theoretic in nature: The problem of bounding from
above the transient is reduced to the study of long walks in a specific weighted
graph, and the key technical point is then to design sophisticated walk trans-
formers that do not modify the weights of some walks. On the contrary, our
approach here is more algebraic in the sense that instead of walk transformers,
we use a convolution lemma borrowed from [18]. Based on simpler and more
direct arguments than the classical one, we thus obtain an easy proof that linear
systems are eventually periodic, and a new upper bound on the length of the
initial transient phase which is in O(N4) for linear systems of dimension N with
integer matrices.

Interestingly, the proof simplification does not damage the resulting bound:
Our new transience bound is of the same order as the repetitive and explo-
rative bounds, and so is incomparable with Hartmann and Arguelles’ bound,
and better than Even and Rajsbaum’s bound. Moreover, like the repetitive and
explorative bounds by Charron-Bost et al., it is linear in the size of the system
in various classes of linear systems whereas both Even and Rajsbaum’s bound
and Hartmann and Arguelles’ bounds are both intrinsically at least quadratic.

Finally, we demonstrate how our general transience bound enables the per-
formance analysis of a large variety of distributed systems. First, we immediately
derive a general transience bound for a large class of synchronizers, and we quan-
tify how our synchronizer bound is better than that of Even and Rajsbaum [13]
in the specific case of integer delays. From this synchronizer example, we show
that our transience bound is asymptotically tight. Our result also applies to the
analysis of the performance of distributed routers and schedulers based on the
link-reversal algorithms: We obtain an O(N3) transience bound, improving the
O(N4) bound established by Malka and Rajsbaum [16], and an O(N) bound
for such routers and schedulers when running in trees. For link-reversal routers,
eventual periodicity actually corresponds to termination, and an O(N2) bound
on time complexity [6] directly follows from our transience bound.

2 Preliminaries

This section introduces max-plus linear systems, their graph interpretation, and
discusses general properties of eventually periodic sequences.

As observed in [16], the behavior of distributed systems like network synchro-
nizers and distributed link reversal algorithms can be described by a sequence
(x(n))n>0 of N -dimensional vectors that satisfy a recurrence relation of the fol-



lowing form:

∀i ∈ [N ], ∀n > 0, xi(n+ 1) = max
j∈Ni

(

xj(n) + aij
)

(1)

where the aij ’s are reals, and Ni is a subset of [N ] = {1, . . . , N}. Trivially, a
system of this form corresponds to the recurrence relation

∀i ∈ [N ], ∀n > 0, xi(n+ 1) = max
j∈[N ]

(

xj(n) +Aij

)

(2)

with Aij = aij if j in Ni and −∞ otherwise. Recurrence (2) turns out to be
linear system in the max-plus algebra, i.e., when replacing ‘+’ by ‘max’ and ‘×’
by ‘+’, over the set R = R ∪ {−∞}. Let us recall that the max-plus product

of two matrices A and B is defined by (AB)ij = maxk(Aik + Bkj). With this
definition, (2) is equivalent to

∀n > 0, x(n+ 1) = Ax(n) . (3)

Given an initial vector v ∈ R
N , recurrence (3) admits a unique solution given

by
∀n > 0, x(n) = Anv . (4)

Thus the analysis of distributed systems whose behaviors are controlled by a
recurrence relation of the form (1) leads to study the systems (4).

To every matrix A naturally corresponds a weighted digraph which we denote
by G(A): Its node set is [N ] and there exists an edge from node i to node j with
weight Aij if and only if Aij is finite. Matrix A is irreducible if G(A) is strongly
connected. A walk consists of a sequence of successive edges, as well as a start
and an end node. We denote by ℓ(W ) the length of walk W . A path is a walk
without node repetition. A closed walk is a walk whose start node is equal to its
end node. A cycle is a closed walk in which the only node repetition is the start
and end node. The circumference Γ (G) of graph G is the maximum cycle length
in G.3 We write W(i, j) for the set of walks from node i to node j, and W(i→)
for the set of walks starting from i. Further, Wn(i, j) and Wn(i→) denote the
set of walks in W(i, j) and W(i→) of length n, respectively.

We write p(W ) for the edge weight of walk W , i.e., the sum of the weights of
its edges. Given a vector v, the edge-node weight pv(W ) is equal to p(W ) + vj ,
where j is W ’s end node. These definitions yield a correspondence between the
matrix power An as well as the vector Anv, and the maximum weight of walks
of length n in G(A), namely:

(An)ij = max{p(W ) : W ∈ Wn(i, j)}

(Anv)i = max{pv(W ) : W ∈ Wn(i→)}
(5)

In the following, we write An
ij instead of (An)ij , as no confusion can arise. A

closed walk is critical if its average edge weight is maximum, i.e., if it is equal

3 The computation of the circumference of a graph is NP-hard in the number of nodes.
However, the circumference is always upper bounded by the number of nodes.



to the rate of A defined by

λ(A) = max {p(C)/ℓ(C) : C is a closed walk in G(A)} , (6)

and simply denoted λ when no confusion can arise. The set of critical closed
walks induces the critical subgraph Gc whose nodes are called critical nodes. It
is well-known (e.g., see [15]) that every closed walk in Gc is necessarily critical.

Let p be a strictly positive integer and ̺ a real number. A sequence f : N → R

is eventually periodic with period p and ratio ̺ if there exists an integer T such
that:

∀n > T : f(n+ p) = f(n) + p · ̺ (7)

Obviously if q is any multiple of p, then f is eventually periodic with period q and
ratio ̺. Hence, there always exists a common period of two eventually periodic
sequences.

For every period p, there exists a unique minimal transient Tp that satisfies
Equation (7). The next lemma shows that these minimal transients do, in fact,
not depend on p. We will henceforth call this common value the transient of f .
Due to limitation of space, its proof is postponed to the appendix.

Lemma 1 Let f : N → R be eventually periodic. Let p and q be two periods

of f with respective minimal transients Tp and Tq. Then Tp = Tq.

The next two elementary lemmas both play an important role in our ap-
proach: They state transience bounds for a sequence obtained by the element-
wise composition of two eventually periodic sequences f and g with common
ratio in terms of the transients of f and g.

Lemma 2 Let f, g : N → R be eventually periodic with common ratio ̺ and re-

spective transients Tf and Tg. Then the sequence max{f, g} is eventually periodic

with ratio ̺ and transient at most max{Tf , Tg}.

In analogy to classical convolution, one defines the max-plus convolution f⊗g
of two sequences f and g as

(f ⊗ g)(n) = max
n1+n2=n

(

f(n1) + g(n2)
)

. (8)

Nachtigall [18] then proved a bound on the transient of the max-plus convolution
of two eventually periodic sequences f and g with the same ratio.

Lemma 3 ([18, Lemma 6.1]) Let f, g : N → R be eventually periodic with

common ratio ̺ and respective transients Tf and Tg. Then the convolution f ⊗g
is eventually periodic with ratio ̺ and transient at most equal to Tf +Tg + p− 1
if p denotes a common period to f and g.

The notion of eventual periodicity naturally extends to vectors: a sequence of
vectors (x(n))n>0 is eventually periodic with period p and ratio ̺ if each sequence
(xi(n))n>0 is eventually periodic with period p and ratio ̺. Its transient is the
maximum transient of the (xi(n))n>0’s.



3 Transience Bound

The fundamental theorem in max-plus algebra [11] shows that any linear system
as defined in (4) is eventually periodic with ratio equal to the rate λ of A if A is
irreducible. In this section, we establish an effective upper bound on the transient
of these systems. In this way, we also give an alternative proof of the fundamental
theorem that is simpler and more direct than the classical one.

3.1 Proof Strategy

By definition of the max-plus matrix product, the i-th component of x(n) is
equal to

xi(n) = max
j∈[N ]

(

An
ij + vj

)

.

In view of Lemma 2, our strategy will thus consist in showing that each sequence
(An

ij+vj)n>0 is eventually periodic. In the case either i or j is a critical node, the
question is solved by Nachtigall [18, Lemma 3.2] and Even and Rajsbaum [13,
Theorem 6]: they independently showed that in this case, the sequence (An

ij)n>0

is eventually periodic, and gave effective upper bounds on the transients. For
simplicity, every sequence (An

ij)n>0 will be denoted by Aij in the following.

Lemma 4 Let A be an irreducible N × N matrix, and λ the rate of A. If k is

a node of a critical cycle C of length ℓ, then both sequences Aik and Aki are

eventually periodic with period ℓ, ratio λ, and transient at most ℓ · (N − 1).

In the appendix, we give a proof of this lemma that essentially follows the one
by Nachtigall [18].

In the general case where neither i nor j is critical, we observe that for any
pair of nonnegative integers (n1, n2) such that n = n1 + n2, we have

An
ij = max

k∈[N ]

(

An1

ik +An2

kj

)

.

It trivially follows that

An
ij = max

n1+n2=n

(

max
k∈[N ]

(

An1

ik +An2

kj

))

= max
k∈[N ]

(

max
n1+n2=n

(

An1

ik +An2

kj

))

,

and so
An

ij = max
k∈[N ]

(

(Aik ⊗Akj)(n)
)

.

So we can write

xi(n) = max
j∈[N ]

max
k∈[N ]

(

(Aik ⊗Akj)(n) + vj
)

. (9)

If k is a critical node which lies on a critical cycle of length ℓk, then Lemmas 3
and 4 imply that each sequence Aik ⊗Akj is eventually periodic, with period ℓk,
ratio λ, and a transient that is bounded from above by 2ℓk · (N − 1) + ℓk − 1.



Thus, if we could show that the range of the second maximum in Equation (9)
can be restricted to the critical nodes, i.e.,

xi(n) = max
j∈[N ]

max
k∈Gc

(

(Aik ⊗Akj)(n) + vj
)

, (10)

we would readily obtain a bound on the transience of the sequence xi from
Lemma 2. We will, indeed, show in Section 3.2 that Equation (10) holds for n
at least equal to some integer nc. An effective upper bound on nc finally allows
us to conclude with a bound on the transience of xi.

The following lemma provides a condition ensuring that Equation (10) holds.

Lemma 5 If there exists a walk of maximum pv-weight in Wn(i→) that con-

tains a critical node, then

xi(n) = max
j∈[N ]

max
k∈Gc

(

(Aik ⊗Akj)(n) + vj
)

.

Proof. From (9), we trivially derive that

xi(n) > max
j∈[N ]

max
k∈Gc

(

(Aik ⊗Akj)(n) + vj
)

.

Conversely, let W be a walk of maximum pv-weight in Wn(i→) that contains
a critical node k0, and let j0 be the end node of W . By (5), we have xi(n) =
p(W ) + vj0 . Let us decompose W into W = W1 ·W2 such that W1 ends at k0.
Setting ℓ1 = ℓ(W2) and ℓ2 = ℓ(W2), we get

xi(n) = p(W1) + p(W2) + vj0 6 Aℓ1
ik0

+Aℓ2
k0j0

+ vj0 .

Therefore,

xi(n) 6 max
n1+n2=n

(

An1

ik0
+An2

k0j0
+ vj0

)

= (Aik0
⊗Ak0j0)(n) + vj0 .

It follows that

xi(n) 6 max
j∈[N ]

max
k∈Gc

(

(Aik ⊗Akj)(n) + vj
)

,

which concludes the proof.

3.2 Critical Bound

We next show that there always exists an integer nc such that the condition in
Lemma 5 holds for all n > nc, and we give an effective upper bound Bc on nc

which we call the critical bound. For that, we compare a maximum pv-weight
walk Ŵ inWn(i→) that does not visit a critical node with a walkW constructed
from Ŵ such that it “pumps” its weight in a critical cycle as often as possible,
but still has the same length n as Ŵ . Since Ŵ may not use critical cycles, it will,
when compared to W , on average lose weight in each of its cycles. We arrive at



a bound Bc, such that, if Ŵ has length n > Bc then Ŵ has weight less than W
and thus cannot be a maximum pv-weight walk in Wn(i→).

Let ‖v‖ = maxi∈[N ](vi)−mini∈[N ](vi). Denote by δ the minimal finite entry
of A and by ∆nc the maximum Aij where both i and j are non-critical nodes.
Further let

λnc = max {p(C)/ℓ(C) : C is a closed walk with no critical node in G(A)} .

Lemma 6 (Critical Bound) For all i ∈ [N ] and n > 0, each walk with maxi-

mum pv-weight in Wn(i→) contains a critical node if

n > Bc = max

{

N ,
‖v‖+ (∆nc − δ) (N − 1)

λ− λnc

}

.

Proof. We first reduce the case of a graph G with arbitrary λ to the case where
λ = 0: Let G0 be the graph constructed from G by subtracting λ from all of G’s
edge weights. Clearly then G0 has λ = 0 and the (unweighted) critical subgraphs
of G and G0 are the same. Further W is a walk with maximum pv-weight in G if
and only if it is a walk with maximum pv-weight in G0. The graph parameters δ,
∆nc, and λnc of G0 are obtained by subtracting G’s λ from the respective graph
parameters of G. The lemma’s bound Bc thus is the same for graphs G and G0,
and we may safely assume that λ = 0.

If λnc = −∞, then every nonempty cycle contains a critical node. Because
every walk of length greater or equal to N necessarily contains a cycle as a
subwalk and because Bc > N , in particular every walk with maximum pv-weight
in Wn(i→) contains a critical node if n > Bc and λnc = −∞.

We now consider the case λnc 6= −∞. We proceed by contradiction: Suppose
that there exists an integer n such that n > Bc, a node i and a walk of maximum
pv-weight in Wn(i→) with non-critical nodes only; let Ŵ be such a walk. Let W0

be the acyclic part of Ŵ , defined in the following manner: Starting at Ŵ , we
repeatedly remove nonempty subcycles from the walk until we arrive at a path.
In general there are several possible choices of which subcycles to remove, but
we fix some global choice function to make the construction of W0 deterministic.

Next choose a critical node k, and then a prefix Wc of W0, such that the
distance between k and the end node of Wc is minimal. Let W2 be a path of
minimal length from the end node of Wc to k. Let W3 be the walk such that
W0 = Wc ·W3. Further let C be a critical cycle starting at k.

We distinguish two cases for n, namely (a) n > ℓ(Wc) + ℓ(W2), and (b)
n < ℓ(Wc) + ℓ(W2).

Case A: Let m ∈ N be the quotient in the Euclidean division of n− ℓ(Wc)−
ℓ(W2) by ℓ(C), and choose W1 to be a prefix of C of length n−

(

ℓ(Wc)+ℓ(W2)+

m · ℓ(C)
)

(see Figure 1). Clearly W1 starts at k. If we set W = Wc ·W2 ·C
m ·W1,

we get ℓ(W ) = n and

pv(W ) > min
16j6N

(vj) + p(Wc) + p(W2) + p(W1) (11)

since we assume λ = 0.
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Fig. 1. Walk W in proof of Lemma 6

For the pv-weight of Ŵ , we have

pv(Ŵ ) 6 pv(W0) + λnc·
(

ℓ(Ŵ )− ℓ(W0)
)

6 max
16j6N

(vj) + p(W0) + λnc·
(

ℓ(Ŵ )− ℓ(W0)
) (12)

By assumption pv(Ŵ ) > pv(W ), and from (11), (12), and λnc < 0 we therefore
obtain

ℓ(Ŵ ) 6
‖v‖+ p(W3)− p(W1)− p(W2)

−λnc

+ ℓ(W0)

6
‖v‖+∆nc ℓ(W3)− δ (ℓ(W1) + ℓ(W2))

−λnc

+ ℓ(W0)

(13)

Denote by Nnc the number of non-critical nodes. The following three inequalities
trivially hold: ℓ(W3) 6 Nnc−1, λnc > δ, and ℓ(W1) < N −Nnc. Since there is at
least one critical node, we have ℓ(W3) < N − 1. Moreover from the minimality
constraint for the length of W2 follows that ℓ(W2) + ℓ(W0) 6 Nnc. Thereby

ℓ(Ŵ ) <
‖v‖+ (∆nc − δ) (N − 1)

−λnc

, (14)

a contradiction to n > Bc. The lemma follows for case A.

Case B: In this case ℓ(Wc) 6 n < ℓ(Wc) + ℓ(W2), and we set W = Wc ·W
′

2,
where W ′

2 is a prefix of W2, such that ℓ(W ) = n. Hence,

pv(W ) > min
16j6N

(vj) + p(Wc) + p(W ′

2) . (15)

We again obtain (12). By assumption pv(Ŵ ) > pv(W ), and by similar arguments
as in case A we derive

ℓ(Ŵ ) 6
‖v‖+ p(W3)− p(W ′

2)

−λnc

+ ℓ(W0)



and since W ′

2 is a prefix of W2 with ℓ(W ′

2) < ℓ(W2),

ℓ(Ŵ ) <
‖v‖+∆nc ℓ(W3)− δ ℓ(W2)

−λnc

+ ℓ(W0) ,

which is less or equal to the bound obtained in (13) of case A. By similar argu-
ments as in case A, the lemma follows in case B.

3.3 Transience Bound

By combination of the above lemmas, we finally obtain the following transience
bound.

Theorem 1 Let A be an irreducible N ×N matrix and let v be a vector in R
N .

Then the sequence of vectors x(n) = Anv is eventually periodic with ratio λ, and
its transient is at most

max

{

‖v‖+ (∆nc − δ) (N − 1)

λ− λnc

, Γc · (2N − 1)− 1

}

,

where Γc is the circumference of the critical graph Gc.

Proof. From Lemmas 5 and 6, we know that each i-th component of x(n) equals

xi(n) = max
j∈[N ]

max
k∈Gc

(

(Aik ⊗Akj)(n) + vj
)

when n > Bc. For each critical node k, let ℓk denote the length of a critical cycle
containing k. By Lemmas 1 and 4, we obtain that all sequences Aik and Akj

are eventually periodic, with period ℓk, ratio λ, and a transient less or equal
to Γc · (N − 1) because ℓk 6 Γc. Lemma 3 shows that the sequence

(

(Aik ⊗

Akj)(n) + vj
)

n>0
is eventually periodic, with ratio λ, and a transient less or

equal to 2Γc · (N − 1) + Γc − 1. By Lemma 2, the same property holds for the
sequence

(

maxj∈[N ] maxk∈Gc
((Aik ⊗ Akj)(n) + vj

)

n>0
. This proves that each

sequence xi is eventually periodic, with ratio λ, and a transient at most equal
to

max
{

Bc , Γc · (2N − 1)− 1
}

. (16)

This concludes the proof.

In the case each finite A’s entry is an integer, the term λ−λnc cannot become
arbitrarily small: If Nnc denotes the number of non-critical nodes, then

1

λ− λnc

6 (N −Nnc) ·Nnc 6
N2

4
. (17)

From that, we immediately derive that our critical bound, and so our transient
bound for linear systems with integer matrices is in O(N3).



3.4 Comparison with Previous Bounds

Hartmann and Arguelles [17] stated the following bound on the transient of the
linear system:

BHA = max

{

‖v‖+N · (∆− δ)

λ− λ0
, 2N2

}

(18)

Here, λ0 is a parameter of the max-balanced reweighted graph [19] of G and ∆
is the maximum edge weight in G.

The first term in (18) corresponds to our critical bound, but is incomparable
with it in general. The second term in (18), namely 2N2, is always greater than
the second term in the maximum in our bound, Γc · (2N − 1)− 1, because of the
trivial estimate Γc 6 N . As demonstrated in the next section, a major difference
to our bound is that (18) is inherently quadratic in N and hence prohibits a
subquadratic analysis of the transient.

Charron-Bost et al. [8] gave two transience bounds for linear systems—the
repetitive and the explorative bound—which both allow for a subquadratic anal-
ysis of the transient. The repetitive bound is equal to max{Bc , ĝ · (2N − 1)− 1}
where ĝ is the maximum girth of strongly connected components of the critical
graph Gc. It is always smaller than our bound in Theorem 1 because ĝ 6 Γc.
The explorative bound is equal to max{Bc , γ̂ · (2N − 1) − 1 + êp} where γ̂ is
the maximum cyclicity and êp the maximum exploration penalty of strongly con-
nected components of the critical graph Gc. The exploration penalty of a graph
is the transient of the sequence of matrix powers of its unweighted adjacency
matrix. The explorative bound is, in general, incomparable with our bound in
Theorem 1.

4 Applications

As stated in the Introduction, various distributed algorithms correspond to linear
max-plus systems. In this section, we explain how our transience bound imme-
diately applies to such distributed algorithms, and allows us to analyze their
performances.

4.1 Synchronizers

Even and Rajsbaum [13] presented a transience bound for a type of network
synchronizers in a system with constant integer communication delays. They
considered a variant of the α-synchronizer [3] in a centrally clocked distributed
system of N processes that communicate by message passing over a strongly
connected network graph G. Each link has constant transmission delay, specified
in terms of central clock ticks. Processes execute the α-synchronizer after an
initial boot-up phase: After receiving round n messages from all its neighbors, a
process proceeds to round n+1 and broadcasts its round n+1 message. Denote
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Fig. 2. Graph H3,2

by t(n) the vector such that ti(n) is the clock tick at which process i broadcasts
its round n message. Even and Rajsbaum showed, by a subtle graph-theoretic
approach, that the synchronizer becomes periodic by time BER = l0+N +2N2,
where l0 is always greater or equal to our critical bound Bc.

One can easily establish that t is in fact a linear max-plus system: t(n+1) =
At(n) where A is the adjacency matrix of the network delay graph. Our bounds
hence directly apply and we obtain a bound on the transient of (t(n))n>0 strictly
better than BER.

As an example, let us consider the graph family Hℓ,c, ℓ > 2 and c > 1,
introduced by Even and Rajsbaum [13] to study the asymptotic behavior of BER:
Let Ĉ and C be cycles of length ℓ and ℓ+ 1 respectively, with edge weights 3c,
except for one link per cycle with weight 3c+ 1. There exists for both Ĉ and C
a path of length ℓ to a distinct node s, and an antiparallel path back. Hereby
the edges in the path from s to C and from s to Ĉ have weight c, the edges in
the path from C to s have weight 3c, and from Ĉ to s, 4c. As an example, H3,2

is depicted in Figure 2.
Observing that the nodes of Ĉ are the critical nodes, ∆ = 4c, δ = c, N = 4ℓ,

λ = 3c + 1/ℓ, and l0 = 112cℓ3 − 16ℓ3 − 12cℓ2 + 4ℓ − 1, Even and Rajsbaum’s
bound is

(112c− 16)ℓ3 + (32− 12c)ℓ2 + 8ℓ− 1 .

For ∆nc = ∆ and λnc = 3c + 1/(ℓ + 1), we obtain for the critical bound Bc =
3cℓ(ℓ+1)(N−1)+1 = 12cℓ3+9cℓ2−3cℓ+1. Since the circumference of the critical
subgraph is Γc = ℓ, we may bound the transient of (t(n))n>0 with Theorem 1
by

max{Bc, 2ℓN − ℓ− 1} = max{Bc, 8ℓ
2 − ℓ− 1} = 12cℓ3 + 9cℓ2 − 3cℓ+ 1 .

Since Even and Rajsbaum have shown that the transient for the graph family
Hℓ,c, ℓ > 2, is in Ω(ℓ3) = Ω(N3), this proves that our transience bound in O(N3)
for integer matrices is asymptotically tight.

4.2 Full Reversal routing and scheduling

Link reversal is a versatile algorithm design paradigm, which was, in particular,
successfully applied to routing [14] and scheduling [4]. Charron-Bost et al. [10]
showed that the analysis of a general class of link reversal algorithms can be re-
duced to the analysis of Full Reversal, a particularly simple algorithm on directed
graphs.



The Full Reversal algorithm comprises a single rule: Each sink reverses all its
(incoming) edges. Given a weakly connected initial graph G0 without antiparallel
edges, we consider a greedy execution of Full Reversal as a sequence (Gt)t>0 of
graphs, where Gt+1 is obtained from Gt by reversing the edges of all sinks in Gt.
As no two sinks in Gt can be adjacent, Gt+1 is well-defined. For each t > 0 we
define the work vector W (t) by setting Wi(t) to the number of reversals of node i
until iteration t, i.e., the number of times node i is a sink in the execution prefix
G0, . . . , Gt−1.

Charron-Bost et al. [9, Corollary 2] have shown that the sequence of work
vectors can be described as a max-plus linear system. More precisely, we have
W (0) = 0 and −W (t + 1) = (−A) · (−W (t)), where Ai,j = 1 and Aj,i = 0 if
(i, j) is an edge of G0; otherwise Ai,j = +∞. Observe that −A is a matrix with
integer weights, ∆nc ∈ {0,−1} and δ = −1. Our results, in particular, imply the
eventual periodicity of the Full Reversal algorithm.

Full Reversal routing In the routing case, the initial graph G0 contains a
nonempty set of destination nodes, which are characterized by having a self-loop.
The initial graph without these self-loops is required to be weakly connected and
acyclic [9, 14]. It was shown that for such initial graphs, the execution terminates
(eventually all Gt are equal), and after termination, the graph is destination-
oriented, i.e., every node has a walk to some destination node. We now show
how the previously known results that the termination time of Full Reversal
routing is quadratic in general [6] and linear in trees [9] directly follows from
Theorem 1.

The set of critical nodes is equal to the set of destination nodes and each
strongly critical component of Gc consists of a single node. Hence λ = 0 and
λnc 6 −1/Nnc 6 −1/(N − 1), i.e., (N − 1)2 is an upper bound on the critical
bound. Since Γc = 1, we obtain from Theorem 1 that the termination time is at
most (N − 1)2, which improves the asymptotic quadratic bound given by Busch
and Tirthapura [6].

If the undirected support of initial graph G0 without the self-loops at the
destination nodes is a tree, we can use our transience bound to give a new proof
that the termination time of Full Reversal routing is linear in N [9, Corollary 5].
Indeed, in that particular case either λnc = −1/2 or λnc = −∞, which both give
a critical bound at most equal to 2(N−1). From Theorem 1 we obtain the linear
transience bound of 2(N − 1), whereas Hartmann and Arguelles’ bound is 2N2.

Full Reversal scheduling When using the Full Reversal algorithm for schedul-
ing, the undirected support of the weakly connected initial graph G0 is inter-
preted as a conflict graph: nodes model processes and an edge between two
processes signifies the existence of a shared resource whose access is mutually
exclusive. The direction of an edge signifies which process is allowed to use the
resource next. A process waits until it is allowed to use all its resources—that
is, it waits until it is a sink—and then performs a step, that is, reverses all edges



to release its resources. To guarantee liveness, the initial graph G0 is required to
be acyclic.

Contrary to the routing case, critical components have at least two nodes, be-
cause there are no self-loops. By using (17), our critical bound is upper-bounded
by N2(N − 1)/4+1, which shows that the transient for Full Reversal scheduling
is at most cubic in the number N of processes. Malka and Rajsbaum [16, Theo-
rem 6.4] proved by reduction to Timed Marked Graphs that the transient is at
most in the order of O(N4). Thus, our bound allows to improve this asymptotic
result by an order of N .

In the case of Full Reversal scheduling on trees we even obtain a linear bound
in N : In this case it holds that λ = −1/2, λnc = −∞, and so our critical bound
is 1. Further, Gc = G and Γc = 2. Theorem 1 thus implies a linear upper
bound on the transient of Full Reversal scheduling on trees of 4N − 3, which
establishes a new result for these distributed schedulers. By contrast, Hartmann
and Arguelles again can only obtain the quadratic bound of 2N2.

References

1. Akian, M., Gaubert, S., Walsh, C.: Discrete Max-Plus Spectral Theory. In: Litvi-
nov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics,
pp. 53–78. AMS, Providence (2005)

2. Attiya, H., Gramoli, V., Milani, A.: A Provably Starvation-Free Distributed Di-
rectory Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 405–419. Springer, Heidelberg (2010)

3. Awerbuch, B.: Complexity of Network Synchronization. J. ACM 32, 804–823 (1985)
4. Barbosa, V.C., Gafni, E.: Concurrency in Heavily Loaded Neighborhood-

Constrained Systems. ACM T. Progr. Lang. Sys. 11, 562–584 (1989)
5. Bouillard, A., Gaujal, B.: Coupling Time of a (max,plus) Matrix. In: Workshop on

Max-Plus Algebra at the 1st IFAC Symposium on System Structure and Control.
Elsevier, Amsterdam (2001)

6. Busch, C., Tirthapura, S.: Analysis of Link Reversal Routing Algorithms. SIAM
J. Comput. 35, 305–326 (2005)

7. Chandy, K.M., Misra, J.: The Drinking Philosophers Problem. ACM T. Progr.
Lang. Sys. 6, 632–646 (1984)
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