The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Smart Materials and Structures Année : 2013

The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system

Résumé

A negative capacitance shunt is a basic, analog, active circuit electrically connected to a piezoelectric transducer to control the vibrations of flexural bodies. The shunt circuit consists of a resistor and a synthetic negative capacitor to introduce a real and imaginary impedance on a vibrating mechanical system. The electrical impedance of the negative capacitance shunt modifies the effective modulus of the piezoelectric transducer to reduce the stiffness and increase the damping, which causes a decrease in amplitude of the vibrating structure to which the elements are bonded. To gain an insight into the electromechanical coupling and power output, the shunt and the electrical properties of the piezoelectric transducer are modeled using circuit modeling software. The power output of the model is validated with experimental measurements of a shunt connected to a piezoelectric transducer pair bonded to a vibrating aluminum cantilever beam. The model is used to select the passive components of the negative capacitance shunt to increase the efficiency and quantify the voltage output limit of the op-amp.
Fichier principal
Vignette du fichier
Beck2013.pdf (834.89 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY - Paternité

Dates et versions

hal-00993395 , version 1 (25-04-2023)

Licence

Paternité

Identifiants

Citer

Benjamin S. Beck, Kenneth Cunefare, Manuel Collet. The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system. Smart Materials and Structures, 2013, 22, pp.065009. ⟨10.1088/0964-1726/22/6/065009⟩. ⟨hal-00993395⟩
40 Consultations
57 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More