SOA - NOLM in Reflective Configuration for Optical Regeneration in High Bit Rate Transmission Systems
Résumé
This paper presents a theoretical and experimental investigation of optical signal regeneration properties of a non-linear optical loop mirror using a semiconductor optical amplifier as the active element (SOA-NOLM). While this device has been extensively studied for optical time division demultiplexing (OTDM) and wavelength conversion applications, our proposed approach, based on a reflective configuration, has not yet been investigated, particularly in the light of signal regeneration. The impact on the transfer function shape of different parameters, like SOA position in the interferometer and SOA input optical powers, are numerically studied to appreciate the regenerative capabilities of the device.
Regenerative performances in association with a dual stage of SOA to create a 3R regenerator which preserves the data polarity and the wavelength are experimentally assessed. Thanks to this complete regenerative function, a 100.000 km error free transmission has experimentally been achieved at 10 Gb/s in a recirculating loop. The evolution of Bit Error Rate for multiple pass into the regenerator and the polarization insensitivity demonstration to input data are presented.
Regenerative performances in association with a dual stage of SOA to create a 3R regenerator which preserves the data polarity and the wavelength are experimentally assessed. Thanks to this complete regenerative function, a 100.000 km error free transmission has experimentally been achieved at 10 Gb/s in a recirculating loop. The evolution of Bit Error Rate for multiple pass into the regenerator and the polarization insensitivity demonstration to input data are presented.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...