Analysis of Adaptive Multilevel Splitting algorithms in an idealized case - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2015

Analysis of Adaptive Multilevel Splitting algorithms in an idealized case

Résumé

The Adaptive Multilevel Splitting algorithm is a very powerful and versatile method to estimate rare events probabilities. It is an iterative procedure on an interacting particle system, where at each step, the $k$ less well-adapted particles among $n$ are killed while $k$ new better adapted particles are resampled according to a conditional law. We analyze the algorithm in the idealized setting of an exact resampling and prove that the estimator of the rare event probability is unbiased whatever $k$. We also obtain a precise asymptotic expansion for the variance of the estimator and the cost of the algorithm in the large $n$ limit, for a fixed $k$.
Fichier principal
Vignette du fichier
ArticleAMS.pdf (413.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00987297 , version 1 (06-05-2014)

Identifiants

Citer

Charles-Edouard Bréhier, Tony Lelièvre, Mathias Rousset. Analysis of Adaptive Multilevel Splitting algorithms in an idealized case. ESAIM: Probability and Statistics, 2015, 19, ⟨10.1051/ps/2014029⟩. ⟨hal-00987297⟩
281 Consultations
320 Téléchargements

Altmetric

Partager

More