Existence, Uniqueness and Asymptotic Behavior for Nonlocal Parabolic Problems with Dominating Gradient Terms - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2016

Existence, Uniqueness and Asymptotic Behavior for Nonlocal Parabolic Problems with Dominating Gradient Terms

Résumé

In this paper we deal with the well-posedness of Dirichlet problems associated to nonlocal Hamilton-Jacobi parabolic equations in a bounded, smooth domain $\Omega$, in the case when the classical boundary condition may be lost. We address the problem for both coercive and noncoercive Hamiltonians: for coercive Hamiltonians, our results rely more on the regularity properties of the solutions, while noncoercive case are related to optimal control problems and the arguments are based on a careful study of the dynamics near the boundary of the domain. Comparison principles for bounded sub and supersolutions are obtained in the context of viscosity solutions with generalized boundary conditions, and consequently we obtain the existence and uniqueness of solutions in $C(\bar{\Omega} \times [0,+\infty))$ by the application of Perron's method. Finally, we prove that the solution of these problems converges to the solutions of the associated stationary problem as $t \to +\infty$ under suitable assumptions on the data.
Fichier principal
Vignette du fichier
B-T-noncensored-parabolic.pdf (282.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00985958 , version 1 (30-04-2014)

Identifiants

Citer

Guy Barles, Erwin Topp. Existence, Uniqueness and Asymptotic Behavior for Nonlocal Parabolic Problems with Dominating Gradient Terms. SIAM Journal on Mathematical Analysis, 2016, 48 (2), pp.1512-1547. ⟨10.1137/140967192⟩. ⟨hal-00985958⟩
225 Consultations
268 Téléchargements

Altmetric

Partager

More