Source Separation in Chemical Analysis : Recent Achievements and Perspectives
Résumé
Source separation is one of the most relevant estimation problems found in chemistry. Indeed, dealing with mixtures is paramount in different kinds of chemical analysis. For instance, there are some cases where the analyte is a chemical mixture of different components, e.g., in the analysis of rocks and heterogeneous materials through spectroscopy. Moreover, a mixing process can also take place even when the components are not chemically mixed. For instance, in ionic analysis of liquid samples, the ions are not chemically connected, but, due to the lack of selectivity of the chemical sensors, the acquired responses may be influenced by ions that are not the desired ones. Finally, there are some situations where the pure components cannot be isolated chemically since they appear only in the presence of other components. In this case, BSS may provide these components that cannot be retrieved otherwise. In this paper, our aim is to shed some light on the use of BSS in chemical analysis. In this context, we firstly provide a brief overview on source separation (Section II), with particular attention to the classes of linear and nonlinear mixing models (Sections III and IV, respectively). Then, (in Section V), we will give some conclusions and focus on challenging aspects that are found in chemical analysis. Although dealing with a relatively new field of applications, this article is not an exhaustive survey of source separation methods and algorithms, since there are solutions originated in closely related domains (e.g. remote sensing and hyperspectral imaging) that suit well several problems found in chemical analysis. Moreover, we do not discuss the supervised source separation methods, which are basically multivariate regression techniques, that one can find in chemometrics.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...