A geometric study of Wasserstein spaces: isometric rigidity in negative curvature - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2016

A geometric study of Wasserstein spaces: isometric rigidity in negative curvature

Résumé

Given a metric space X, one defines its Wasserstein space W2(X) as a set of sufficiently decaying probability measures on X endowed with a metric defined from optimal transportation. In this article, we continue the geometric study of W2(X) when X is a simply connected, nonpositively curved metric spaces by considering its isometry group. When X is Euclidean, the second named author proved that this isometry group is larger than the isometry group of X. In contrast, we prove here a rigidity result: when X is negatively curved, any isometry of W2(X) comes from an isometry of X.
Fichier principal
Vignette du fichier
isometric-rigidity-rev.pdf (380 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00974554 , version 1 (07-04-2014)
hal-00974554 , version 2 (20-05-2015)
hal-00974554 , version 3 (11-10-2019)

Identifiants

Citer

Jérôme Bertrand, Benoît Kloeckner. A geometric study of Wasserstein spaces: isometric rigidity in negative curvature. International Mathematics Research Notices, 2016, 2016 (5), pp.1368-1386. ⟨10.1093/imrn/rnv177⟩. ⟨hal-00974554v3⟩
288 Consultations
562 Téléchargements

Altmetric

Partager

More