Moment bounds for dependent sequences in smooth Banach spaces
Résumé
We prove a Marcinkiewicz-Zygmund type inequality for random variables taking values in a smooth Banach space. Next, we obtain some sharp concentration inequalities for the empirical measure of {T, T^2, ..., T^n}, on a class of smooth functions, when T belongs to a class of nonuniformly expanding maps of the unit interval.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...