Sparse Wavelet Representations of Spatially Varying Blurring Operators - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Sparse Wavelet Representations of Spatially Varying Blurring Operators

Pierre Weiss

Résumé

Restoring images degraded by spatially varying blur is a problem encountered in many disciplines such as astrophysics, computer vision or biomedical imaging. One of the main challenges to perform this task is to design efficient numerical algorithms to approximate integral operators. We introduce a new method based on a sparse approximation of the blurring operator in the wavelet domain. This method requires $\mathcal{O}\left(N \epsilon^{-d/M}\right)$ operations to provide $\epsilon$-approximations, where $N$ is the number of pixels of a $d$-dimensional image and $M\geq 1$ is a scalar describing the regularity of the blur kernel. In addition, we propose original methods to define sparsity patterns when only the operators regularity is known. Numerical experiments reveal that our algorithm provides a significant improvement compared to standard methods based on windowed convolutions.
Fichier principal
Vignette du fichier
Space_Varying_Escande_Weiss_2015.pdf (5.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00971549 , version 1 (03-04-2014)
hal-00971549 , version 2 (15-04-2014)
hal-00971549 , version 3 (16-01-2015)
hal-00971549 , version 4 (22-01-2015)
hal-00971549 , version 5 (23-01-2015)
hal-00971549 , version 6 (09-10-2015)

Identifiants

Citer

Paul Escande, Pierre Weiss. Sparse Wavelet Representations of Spatially Varying Blurring Operators. 2014. ⟨hal-00971549v6⟩
376 Consultations
713 Téléchargements

Altmetric

Partager

More