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Introduction

The problem of image restoration in the presence of spatially varying blur appears in many domains. Examples of applications in computer vision, biomedical imaging and astronomy are shown in Figures 1 and2 respectively. In this paper, we propose new solutions to address one of the main difficulties associated to this problem: the computational evaluation of matrix-vector products.

A spatially variant blurring operator can be modelled as a linear operator and therefore be represented by a matrix H of size N × N , where N represents the number of pixels of a d-dimensional image. Sizes of typical images range from N = 10 6 for small 2D images, to N = 10 10 for large 2D or 3D images. Storing matrices and computing matrix-vector products using the standard representation is impossible for such sizes: it amounts to tera or exabytes of data/operations. In cases where the Point Spread Functions (PSF) supports are sufficiently small in average over the image domain, the operator can be coded as a sparse matrix and be applied using traditional approaches. However, in many practical applications this method turns out to be too intensive and cannot be applied with decent computing times. This may be due to i) large PSFs supports or ii) the need for superresolution applications where the PSFs sizes increase with the resolution. Spatially varying blurring matrices therefore require the development of computational tools to compress them and evaluate them in an efficient way.

Existing approaches

To the best of our knowledge, the first attempts to address this issue appeared at the beginning of the seventies (see e.g. [START_REF] Sawchuk | Space-variant image motion degradation and restoration[END_REF]). Since then, many techniques were proposed. We describe them briefly below Composition of diffeomorphisms and convolutions One of the first method proposed to reduce the computational complexity, is based on first applying a diffeomorphism to the image domain [START_REF] Sawchuk | Space-variant image motion degradation and restoration[END_REF][START_REF] Sawchuk | Space-variant image restoration by coordinate transformations[END_REF][START_REF] Mcnown | Approximate shift-invariance by warping shift-variant systems[END_REF][START_REF] Tabernero | Duality of log-polar image representations in the space and spatial-frequency domains[END_REF][START_REF] Estatico | Shift-invariant approximations of structured shiftvariant blurring matrices[END_REF] followed by a convolution using FFTs and an inverse diffeomorphism. The diffeomorphism is chosen in order to transform the spatially varying blur into an invariant one. This approach suffers from two important drawbacks:

• first it was shown that not all spatially varying kernel can be approximated by this approach [START_REF] Mcnown | Approximate shift-invariance by warping shift-variant systems[END_REF],

• second, this method requires good interpolation methods and the use of Euclidean grids with small grid size in order to correctly estimate integrals.

Separable approximations Another common idea is to approximate the kernel of the operator by a separable one that operates in only one dimension. The computational complexity of a product is thus reduced to d applications of one-dimensional operators. It drastically improves the performance of algorithms. For instance, in 3D fluorescence microscopy, the authors of [START_REF] Preza | Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy[END_REF][START_REF] Maalouf | Fluorescence microscopy three-dimensional depth variant point spread function interpolation using zernike moments[END_REF][START_REF] Hadj | Restoration mehod for spatially variant blurred images[END_REF][START_REF] Zhang | Gaussian approximations of fluorescence microscope point-spread function models[END_REF] proposed to approximate PSFs by anisotropic Gaussians and assumed that the Gaussian variances only vary along one direction (e.g., the direction of light propagation). The separability assumption implies that both the PSF and its variations are separable. Unfortunately, most physically realistic PSFs are not separable and do not vary in a separable manner (see e.g., Figure 3). This method is therefore usually too crude.

this new technique, in no more than O N -d/M operations. In this complexity bound, M ≥ 1 is an integer that describes the smoothness of the blur kernel.

Controlling the spectral norm is usually of little relevance in image processing. Our second contribution is the design of algorithms that iteratively construct sparse matrix patterns adapted to the structure of images. These algorithms rely on the fact that both natural images and operators can be compressed simultaneously in the same wavelet basis.

As a third contribution, we propose an algorithm to design a generic sparsity structure when only the operators regularity is known. This paves the way to the use of wavelet based approaches in blind deblurring problems where operators need to be inferred from the data.

We finish the paper by numerical experiments. We show that the proposed algorithms allow significant speed ups compared to some windowed convolutions based methods.

Let us emphasize that the present paper is a continuation of our recent contribution [START_REF] Escande | Image restoration using sparse approximations of spatially varying blur operators in the wavelet domain[END_REF]. The main evolution is that i) we provide all the theoretical foundations of the approach with precise hypotheses, ii) we propose a method to automatically generate adequate sparsity patterns and iii) we conduct a thorough numerical analysis of the method.

Outline of the paper

The outline of this paper is as follows. We introduce the notation used throughout the paper in Section 2. We propose an original mathematical description of blurring operators appearing in image processing in Section 3. We introduce the proposed method and analyze its theoretical efficiency Section 4. We then propose various algorithms to design good sparsity patterns in Section 5. Finally, we perform numerical tests to analyze the proposed method and compare it to the standard windowed convolutions based methods in Section 6. On the right-hand-side, 3D PSFs inside the sample are observed. This image is from [START_REF] Jorand | Deep and clear optical imaging of thick inhomogeneous samples[END_REF] and used here by courtesy of Corinne Lorenzo. 

Notation

In this paper, we consider d dimensional images defined on a domain Ω = [0, 1] d . The space L 2 (Ω) will denote the space of squared integrable functions defined on Ω. Let α = (α 1 , . . . , α d ) denote a multi-index. The sum of its components is denoted |α| = d i=1 α i . The Sobolev spaces W M,p are defined as the set of functions f ∈ L p with partial derivatives up to order M in L p where p ∈ [1, +∞] and M ∈ N. These spaces, equipped with the following norm are Banach spaces

f W M,p = f L p + |f | W M,p , where, |f | W M,p = |α|=M ∂ α f L p . (1) 
In this notation,

∂ α f = ∂ α 1 ∂x α 1 1 . . . ∂ α d ∂x α d d f .
Let X and Y denote two metric spaces endowed with their respective norms • X and • Y . In all the paper H : X → Y will denote a linear operator and H * its adjoint operator. The subordinate operator norm is defined by

H X→Y = sup x∈X, x X =1
Hx Y .

The notation H p→q corresponds to the case where X and Y are endowed with the standard L p and L q norms. In all the paper, operators acting in a continuous domain are written in plain text format H. Finite dimensional matrices are written in bold fonts H. Approximation operators will be denoted H in the continuous domain or H in the discrete domain.

In this paper we consider a compactly supported wavelet basis of L 2 (Ω). We first introduce wavelet basis of L 2 ([0, 1]). We let φ and ψ denote the scaling and mother wavelets. We assume that the mother-wavelet ψ has M vanishing moments, i.e. for all 0 ≤ m < M,

[0,1] t m ψ(t)dt = 0.
We assume that supp(ψ) = [-c(M )/2, c(M )/2]. Note that c(M ) ≥ 2M -1, with equality for Daubechies wavelets, see, e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing -The Sparse Way[END_REF]Theorem 7.9,p. 294].

We define translated and dilated versions of the wavelets for j ≥ 0 as follows

φ j,l = 2 j/2 φ 2 j • -l , ψ j,l = 2 j/2 ψ 2 j • -l , (2) 
with l ∈ T j and T j = {0, . . . , 2 j -1}.

In dimension d, we use separable wavelet bases, see, e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing -The Sparse Way[END_REF]Theorem 7.26,p. 348]. Let m = (m 1 , . . . , m d ). Define ρ 0 j,l = φ j,l and ρ 1 j,l = ψ j,l . Let e = (e 1 , . . . , e d ) ∈ {0, 1} d . For ease of reading, we will use the shorthand notation λ = (j, m, e). We also denote

Λ 0 = (j, m, e) | j ∈ Z, m ∈ T j , e ∈ {0, 1} d and Λ = (j, m, e) | j ∈ Z, m ∈ T j , e ∈ {0, 1} d \ {0} .
Wavelet ψ λ is defined by ψ λ (x 1 , . . . , x d ) = ψ e j,m (x 1 , . . . , x d ) = ρ e 1 j,m 1 (x 1 ) . . . ρ e d j,m d (x d ). Elements of the separable wavelet basis consist of tensor products of scaling and mother wavelets at the same scale. Note that if e = 0 wavelet ψ e j,m has M vanishing moments in R d . We let I j,m = ∪ e supp ψ e j,m and I λ = supp ψ λ . We assume that every function f ∈ L 2 (Ω) can be written as

u = u, ψ 0 0,0 ψ 0 0,0 + e∈{0,1} d \{0} +∞ j=0 m∈T j u, ψ e j,m ψ e j,m = u, ψ 0 0,0 ψ 0 0,0 + λ∈Λ u, ψ λ ψ λ = λ∈Λ 0 u, ψ λ ψ λ
This is a slight abuse since wavelets defined in (2) do not define a Hilbert basis of L 2 ([0, 1] d ).

There are various ways to define wavelet bases on the interval [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and wavelets having a support intersecting the boundary should be given a different definition. We stick to these definitions to keep the proofs simple. We let Ψ * : L 2 (Ω) → l 2 (Z) denote the wavelet decomposition operator and Ψ : l 2 (Z) → L 2 (Ω) its associated reconstruction operator. The discrete wavelet transform is denoted Ψ : R N → R N . We refer to [START_REF] Mallat | A Wavelet Tour of Signal Processing -The Sparse Way[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF][START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] for more details on the construction of wavelet bases.

3 Blurring operators and their mathematical properties

A mathematical description of blurring operators

In this paper, we consider d-dimensional real-valued images defined on a domain Ω = [0, 1] d , where d denotes the space dimension. We consider a blurring operator H : L 2 (Ω) → L 2 (Ω) defined for any u ∈ L 2 (Ω) by the following integral operator:

∀x ∈ Ω, Hu(x) = y∈Ω K(x, y)u(y)dy. (3) 
The function K : Ω × Ω → R is a kernel that defines the Point Spread Function (PSF) K( • , y) at each location y ∈ Ω. The image Hu is the blurred version of u. By the Schwartz kernel theorem, a linear operator of kind (3) can represent any linear operator if K is a generalized function. We thus need to determine properties of K specific to blurring operators that will allow to design efficient numerical algorithms to approximate the integral [START_REF] Bartels | Total variation minimization with finite elements: Convergence and iterative solution[END_REF].

We propose a definition of the class of blurring operators below.

Definition 1 (Blurring operators). Let M ∈ N and f : [0, 1] → R + denote a non-increasing bounded function. An integral operator is called a blurring operator in the class A(M, f ) if it satisfies the following properties:

1. Its kernel K ∈ W M,∞ (Ω × Ω);
2. The partial derivatives of K satisfy:

(a) ∀ |α| ≤ M, ∀(x, y) ∈ Ω × Ω, |∂ α x K(x, y)| ≤ f ( x -y ∞ ) . ( 4 
) (b) ∀ |α| ≤ M, ∀(x, y) ∈ Ω × Ω, ∂ α y K(x, y) ≤ f ( x -y ∞ ) . (5) 
Let us justify this model from a physical point of view. Most imaging systems satisfy the following properties:

Spatial decay.

The PSFs usually have a bounded support (e.g. motion blurs, convolution with the CCD sensors support) or at least a fast spatial decay (Airy pattern, Gaussian blurs,...). This property can be modelled as property 2a. For instance, the 2D Airy disk describing the PSF due to diffraction of light in a circular aperture satisfies 2a with f (r) = 1 (1+r) 4 (see e.g. [START_REF] Born | Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[END_REF]).

PSF smoothness.

In most imaging applications, the PSF at y ∈ Ω, K( • , y) is smooth. Indeed it is the result of a convolution with the acquisition device impulse response which is smooth (e.g. Airy disk). This assumption motivates inequality (4).

PSFs variations are smooth

We assume that the PSF does not vary abruptly on the image domain. This property can be modelled by inequality [START_REF] Beylkin | Fast wavelet transform and numerical algorithm[END_REF]. It does not hold true in all applications. For instance, when sharp discontinuities occur in the depth maps, the PSFs can only be considered as piecewise regular. This assumption simplifies the analysis of numerical procedures to approximate H. Moreover, it seems reasonable in many settings. For instance, in fluorescence microscopy, the PSF width (or Strehl ratio) mostly depends on the optical thickness, i.e. the quantity of matter laser light has to go through, and this quantity is intrinsically continuous. Even in cases where the PSFs variations are not smooth, the discontinuities locations are usually known only approximately and it seems important to smooth the transitions in order to avoid reconstruction artifacts [START_REF] Bar | Restoration of images with piecewise space-variant blur[END_REF].

Remark 1. A standard assumption in image processing is that the constant functions are preserved by the operator H. This hypothesis ensures that brightness is preserved on the image domain. In this paper we do not make this assumption and thus encompass image formation models comprising blur and attenuation. Handling attenuation is crucial in domains such as fluroescence microscopy.

Remark 2. The above properties are important to derive mathematical theories, but only represent an approximation of real systems. The methods proposed in this paper may be applied even if the above properties are not satisfied and are likely to perform well. It is notably possible to relax the boundedness assumption.

Wavelet representation of the blurring operator

In this section, we show that blurring operators can be well approximated by sparse representations in the wavelet domain. Since H is a linear operator in a Hilbert space, it can be written as H = ΨΘΨ * , where Θ : l 2 (Z) → l 2 (Z) is the (infinite dimensional) matrix representation of the blur operator in the wavelet domain. Matrix Θ is characterized by the coefficients:

θ λ,µ = Hψ λ , ψ µ , ∀λ, µ ∈ Λ. (6) 
In their seminal papers [START_REF] Meyer | Wavelets and operators[END_REF][START_REF] Coifman | Wavelets, Calderón-Zygmund and multilinear operators[END_REF][START_REF] Beylkin | Fast wavelet transform and numerical algorithm[END_REF], Y. Meyer, R. Coifman, G. Beylkin and V. Rokhlin prove that the coefficients of Θ decrease fastly away from its diagonal for a large class of pseudo-differential operators. They also show that this property allows to design fast numerical algorithms to approximate H, by thresholding Θ to obtain a sparse matrix. In this section, we detail this approach precisely and adapt it to the class of blurring operators.

This section is organized as follows: first, we discuss the interest of approximating H in a wavelet basis rather than using the standard discretization. Second, we provide various theoretical results concerning the number of coefficients necessary to obtain an -approximation of H.

Discretization of the operator by projection

The proposed method relies on a Galerkin discretization of H. The main idea is to use a projection on a finite dimensional linear subspace V q = Span(ϕ 1 , . . . , ϕ q ) of L 2 (Ω) where (ϕ 1 , ϕ 2 , . . .) is an orthonormal basis of L 2 (Ω). We define a projected operator H q by H q u = P Vq HP Vq u. where P Vq is the projector on V q . We can associate a q × q matrix Θ to this operator defined by Θ = ( Hϕ i , ϕ j ) 1≤i,j≤q .

It is very common in image processing to assume that natural images belong to functional spaces containing functions with some degree of regularity. For instance, images are often assumed to be of bounded total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. This hypothesis implies that

u -P Vq u 2 = O(q -α ) (7)
for a certain α > 0. For instance, in 1D, if (ϕ 1 , ϕ 2 , . . .) is a wavelet or a Fourier basis and u ∈ H 1 (Ω) then α = 2. For u ∈ BV (Ω) (the space of bounded variation functions), α = 1 in 1D and α = 1/2 in 2D [START_REF] Mallat | A Wavelet Tour of Signal Processing -The Sparse Way[END_REF][START_REF] Petrushev | Nonlinear approximation and the space bv (r 2)[END_REF]. Moreover, if we assume that H is a regularizing operator, meaning that Hu-P Vq Hu 2 = O(q -β ) with β ≥ α for all u satisfying (7), then we have:

Hu -H q u 2 = Hu -P Vq H(u + P Vq u -u) 2 ≤ Hu -P Vq Hu 2 + P Vq H 2→2 P Vq u -u 2 = O(q -α ).
This simple analysis shows that under mild assumptions, the Galerkin approximation of the operator converges and that the convergence rate can be controlled. The situation is not as easy for standard discretization using finite elements for instance (see, e.g., [START_REF] Wang | Error bounds for finite-difference methods for rudin-osherfatemi image smoothing[END_REF][START_REF] Bartels | Total variation minimization with finite elements: Convergence and iterative solution[END_REF] where a value α = 1/6 is obtained in 2D for BV functions, while the simple analysis above leads to α = 1/2).

Discretization by projection on a wavelet basis

In order to get a representation of the operator in a finite dimensional setting, we truncate the wavelet representation at scale J. This way, we obtain an operator H acting on a space of dimension N , where N = 1 + J-1 j=0 (2 d -1)2 dj denotes the numbers of wavelets kept to represent images.

After discretization, it can be written in the following convenient form:

H = ΨΘΨ * (8) 
where Ψ : R N → R N is the discrete separable wavelet transform. Matrix Θ is an N × N matrix which corresponds to a truncated version (also called finite section) of the matrix Θ defined in (6).

Theoretical guarantees with sparse approximations

Sparse approximations of integral operators have been studied theoretically in [START_REF] Beylkin | Fast wavelet transform and numerical algorithm[END_REF][START_REF] Meyer | Wavelets and operators[END_REF]. They then have been successfully used in the numerical analysis of PDEs [START_REF] Dahmen | Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solution[END_REF][START_REF] Cohen | Adaptive wavelet methods ii-beyond the elliptic case[END_REF][START_REF] Cohen | Numerical analysis of wavelet methods[END_REF]. Surprisingly, they have been scarcely applied to image processing. The two exceptions we are aware of are the paper [START_REF] Chang | Wavelet foveation[END_REF], where the authors show that wavelet multipliers can be useful to approximate foveation operators. More recently, [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] proposed an approach that is very much related to that of our paper.

Let us provide a typical result that motivates the proposed approach.

Lemma 1 (Decay of θ λ,µ ). Assume that H is a blurring operator (see Definition 1) in the class A(M, f ). Assume that the mother wavelet is compactly supported with M vanishing moments.

Then, the coefficients of Θ satisfy the following inequality for all λ = (j, m, e) ∈ Λ and µ = (k, n, e ) ∈ Λ:

|θ λ,µ | ≤ C M 2 -(M + d 2 )|j-k| 2 -min(j,k)(M +d) f λ,µ (9) 
where f λ,µ = f (dist (I λ , I µ )), C M is a constant that does not depend on λ and µ and

dist (I λ , I µ ) = inf x∈I λ , y∈Iµ x -y ∞ = max 0, 2 -j m -2 -k n ∞ -(2 -j + 2 -k ) c(M ) 2 . ( 10 
)
Proof. See Appendix A.

Lemma 1 is the key to obtain all subsequent complexity estimates.

Theorem 2. Let Θ η be the matrix obtained by zeroing all coefficients in Θ such that

2 -min(j,k)(M +d) f λ,µ ≤ η, with λ = (j, m, e) ∈ Λ and µ = (k, n, e ) ∈ Λ. Let H η = ΨΘ η Ψ * denote the resulting operator. Suppose that f is compactly supported in [0, κ] and that η ≤ log 2 (N ) -(M +d)/d . Then:
i) The number of non zero coefficients in Θ η is bounded above by [START_REF] Cohen | Adaptive wavelet methods ii-beyond the elliptic case[END_REF] where

C M N κ d η -d M +d
C M > 0 is independent of N . ii) The approximation H η satisfies H -H η 2→2 η M M +d .
iii) The number of coefficients needed to satisfy

H -H η 2→2 ≤ is bounded above by C M N κ d -d M (12)
where

C M > 0 is independent of N . Proof. See Appendix B.
Let us summarize the main conclusions drawn from this section:

• A discretization in the wavelet domain provides better theoretical guarantees than the standard quadrature rules (see Section 4.1).

• The method is capable of handling automatically the degree of smoothness of the integral kernel K since there is a dependency in -d M where M is the smoothness of the integral operator.

• We will see in the next section that the method is quite versatile since different sparsity patterns can be chosen depending on the knowledge of the blur kernel and on the regularity of the signals that are to be processed.

• The method can also handle more general singular operators as was shown in the seminal papers [START_REF] Meyer | Wavelets and operators[END_REF][START_REF] Coifman | Wavelets, Calderón-Zygmund and multilinear operators[END_REF][START_REF] Beylkin | Fast wavelet transform and numerical algorithm[END_REF].

Remark 3. Similar bounds as ( 9) can be derived with less stringent assumptions. First, the domain can be unbounded, given that kernels have a sufficiently fast decay at infinity. Second, the kernel can blow up on its diagonal, which is the key to study Calderon-Zygmund operators (see [START_REF] Meyer | Wavelets and operators[END_REF][START_REF] Coifman | Wavelets, Calderón-Zygmund and multilinear operators[END_REF][START_REF] Beylkin | Fast wavelet transform and numerical algorithm[END_REF] for more details). We sticked to this simpler setting to simplify the proofs.

Identification of sparsity patterns

A key step to control the approximation quality is the selection of the coefficients in the matrix Θ that should be kept. For instance, a simple thresholding of Θ leads to suboptimal and somewhat disappointing results. In this section we propose algorithms to select the most relevant coefficients for images belonging to functional spaces such as that of bounded variation functions. We study the case where Θ is known completely and the case where only an upper-bound such as ( 9) is available.

Problem formalization

Let H be the N d × N d matrix defined in equation [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. We wish to approximate H by a matrix H K of kind ΨS K Ψ * where S K is a matrix with at most K non-zero coefficients. Let S K denote the space of N × N matrices with at most K non-zero coefficients. The problem we address in this paragraph reads min

S K ∈S K H -H K X→2 = min S K ∈S K max u X ≤1 Hu -ΨS K Ψ * u 2 .
The solution of this problem provides the best K-sparse matrix S K , in the sense that no other choice provides a better SNR uniformly on the unit-ball {u ∈ R N , u X ≤ 1}.

Theoretical choice of the space X

The norm • X should be chosen depending on the type of images that have to be blurred. For instance, it is well-known that natural images are highly compressible in the wavelet domain [START_REF] Mallat | A Wavelet Tour of Signal Processing -The Sparse Way[END_REF][START_REF] Simoncelli | Modeling the joint statistics of images in the wavelet domain[END_REF]. This observation is the basis of JPEG2000 compression standard. Therefore, a natural choice could be to set u X = Ψ * u 1 . This choice will ensure a good reconstruction of images that have a wavelet decomposition with a low 1 -norm.

Another very common assumption in image processing is that images have a bounded total variation. The space of functions with bounded total variation [START_REF] Aubert | Mathematical problems in image processing: partial differential equations and the calculus of variations[END_REF] contains images discontinuous along edges with finite length. It is one of the most successful tools for image processing tasks such as denoising, segmentation, reconstruction, ... Functions in BV (Ω) can be characterized by their wavelet coefficients [START_REF] Petrushev | Nonlinear approximation and the space bv (r 2)[END_REF][START_REF] Mallat | A Wavelet Tour of Signal Processing -The Sparse Way[END_REF]. For instance, if u ∈ BV (Ω), then

λ∈Λ 0 2 j(1-d 2 ) | u, ψ λ | < +∞ ( 13 
)
for all wavelet bases. This results is due to embeddings of BV space in Besov spaces which are characterized by their wavelet coefficients (see [START_REF] Cohen | Numerical analysis of wavelet methods[END_REF] for more details on Besov spaces). This result motivated us to consider norms defined by

u X = ΣΨ * u 1
where Σ = diag(σ 1 , . . . , σ N ) is a diagonal matrix. Depending on the regularity level of the images considered, different diagonal coefficients can be used. For instance, for BV signals in 1D, one could set σ i = 2 j(i)/2 where j(i) is the scale of the i-th wavelet, owing to (13).

Practical choice of the space X

More generally, it is possible to adapt the weights σ i depending on the images to recover. Most images exhibit a similar decay of wavelet coefficients across subbands. This decay is a characteristic of the functions regularity (see e.g. [START_REF] Hernández | A first course on wavelets[END_REF]). To illustrate this fact, we conducted a simple experiment in Figure 4. We evaluate the maximal value of the amplitude of wavelet coefficients of three images with different contents across scales. The wavelet transform is decomposed at level 4 and we normalize the images so that their maximum wavelet coefficient is 1. As can be seen even though the maximal values differ from one image to the next, their overall behavior is the same: amplitudes decay nearly dyadically from one scale to the next. The same phenomenon can be observed with the mean value. This experiment suggests setting σ i = 2 j(i) in order to normalize the wavelet coefficients amplitude in each subband. Once again, the same idea was explored in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF].

An optimization problem

We can now take advantage of the fact that images and operators are sparse in the same wavelet basis. Let z = Ψ * u and ∆ = Θ -S K . Since we consider orthogonal wavelet 

H -H K X→2 = max u X ≤1 Ψ(Θ -S K )Ψ * u 2 = max Σz 1 ≤1 (Θ -S K )z 2 = max z 1 ≤1 ∆Σ -1 z 2 .

Since the operator norm

A 1→2 = max 1≤i≤N A (i) 2
, where A (i) denote the i-th column of the N × N matrix A and by remarking that (∆Σ -1 ) (i) = ∆ (i) σ -1 i , we finally get the following simple expression for the operator norm:

H -H X→2 = max 1≤i≤N 1 σ i ∆ (i) 2 . ( 14 
)
Our goal is thus to find the solution of: min

S K ∈S K max 1≤i≤N 1 σ i ∆ (i) 2 . ( 15 
)
5.2 Link with the approach in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] In this paragraph, we show that the method proposed in [START_REF] Wei | Fast space-varying convolution and its application in stray light reduction[END_REF][START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF], can be interpreted with the formalism given above. In those papers, Θ is approximated by Θ using the following rule:

Θ i,j = Θ i,j if Θ i,j w j is in the K largest values of ΘW -1 0 otherwise. ( 16 
)
The weights w i are set as constant by subbands and learned as described in paragraph 5.1.2. The thresholding rule ( 16) can be interpreted as the solution of the following problem:

min Θ∈S K Θ -Θ W→∞ ,
where here x W = Wx 1 with W = diag(w i ) a diagonal matrix. Indeed, the above problem is equivalent to:

min Θ∈S K max 1≤i,j≤N 1 w j Θ -Θ i,j
.

In other words, the method proposed in [START_REF] Wei | Fast space-varying convolution and its application in stray light reduction[END_REF][START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] constructs a K best-term approximation of Θ in the metric • W→∞ .

Overall, the problem is very similar to [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF], except that the image quality is evaluated through an infinite norm in the wavelet domain, while we propose using a Euclidean norm in the spatial domain. We believe that this choice is more relevant for image processing since the SNR is the most common measure of image quality. In practice, we will see in the numerical experiments that both methods lead to very similar practical results.

Finally, let us mention that the authors in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] have an additional concern of storing the matrix representation with the least memory. They therefore quantize the coefficients in Θ. Since the main goal in this paper is the design of fast algorithms for matrix-vector products, we do not consider this extra refinement.

An algorithm when Θ is known

Finding the minimizer of problem (15) can be achieved using a simple greedy algorithm: the matrix S k+1 is obtained by adding the largest coefficient of the column ∆ i with largest Euclidean norm to S k . This procedure can be implemented efficiently by using quick sort algorithms. The complete procedure is described in Algorithm 1. The overall complexity of this algorithm is O(N 2 log(N )). The most computationally intensive step is the sorting procedure in the initialisation. The loop on k can be accelerated by first sorting the set (γ j ) 1≤j≤N , but the algorithm's complexity remains essentially unchanged.

An algorithm when Θ is unknown

In the previous paragraph, we assumed that the full matrix Θ was known. There are at least two reasons that make this assumption irrelevant. First, computing Θ is very computationally intensive and it is not even possible to store this matrix in RAM for medium sized images (e.g. 512 × 512). Second, in blind deblurring problems, the operator H needs to be inferred from the data and adding priors on the sparsity pattern of S K might be an efficient choice to improve the problem identifiability.

Algorithm 1: An algorithm to find the minimizer of [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF].

Input: Θ: N × N matrix; Σ: Diagonal matrix; K: the number of elements in the thresholded matrix; Output: S K : Matrix minimizing (15) Initialization:

Set S K = 0 ∈ R N ×N ;
Sort the coefficients of each column Θ (j) of Θ in decreasing order; Obtain A (j) the sorted columns Θ (j) and index sets I j ;

The sorted columns A (j) and index set I j satisfy A (j) (i) = Θ (j) (I j (i));

Compute the norms γ j = Update

Θ (j) 2
γ l = γ l - A (l) (O(l)) σ l 2 ; (Update norms vector) Set O(l) = O(l) + 1 ;
(The next value to add in l-th column will be at index O(l) + 1) end end When Θ is unknown, we may take advantage of equation ( 9) to define sparsity patterns. A naive approach would consist in applying Algorithm (1) directly on the upper-bound [START_REF] Chang | Wavelet foveation[END_REF]. However, this matrix cannot be stored and this approach is applicable only for small images. In order to reduce the computational burden, one may take advantage of the special structure of the upper-bound: equation [START_REF] Chang | Wavelet foveation[END_REF] indicates that the coefficients θ λ,µ can be discarded for sufficiently large |j -k| and sufficiently large distance between the wavelet supports. Equation ( 9) thus means that for a given wavelet ψ λ , only its spatial neighbours in neighbouring scales have significant correlation coefficients Hψ λ , ψ µ . We may thus construct sparsity patterns using the notion of multiscale neighbourhoods defined below.

Definition 2 (Multiscale shift). The multiscale shift s λ,µ ∈ Z d between two wavelets ψ λ and ψ µ is defined by

s λ,µ = n 2 max(k-j,0) - m 2 max(j-k,0) . ( 17 
)
We recall that λ = (j, m, e) ∈ Λ and µ = (k, n, e ) ∈ Λ. Note that for k = j, the multiscale shift is just s λ,µ = n -m and corresponds to the standard shift between wavelets, measured as a multiple of the characteristic size 2 -j . The divisions by 2 max(k-j,0) and 2 max(j-k,0) allow to rescale the shifts at the coarsest level. This definition is illustrated in Figure 5.

Definition 3 (Multiscale neighborhood). Let N N N = (j, (k, s)), (j, k) ∈ {0, . . . , log 2 (N ) -1} 2 , s ∈ {0, . . . , 2 min(j,k) -1} d
denote the set of all neighborhood relationships, i.e. the set of all possible couples of type (scale, (scale,shift)). A multiscale neigborhood N is an element of the powerset P(N N N ).

Definition 4 (Multiscale neighbors). Given a multiscale neigborhood N , two wavelets ψ λ and ψ µ will be said to be N -neighbors if (j, (k, s λ,µ )) ∈ N where s λ,µ is defined in equation [START_REF] Deny | Les espaces du type de beppo levi[END_REF].

The problem of finding a sparsity pattern is now reduced to finding a good multiscale neighborhood. In what follows, we let N N N (j) = {(k, s), (j, (k, s)) ∈ N N N } denote the set of all possible neighborhood relationships at scale j. This is illustrated in Figure 6. Let N ∈ P(N N N ) denote a multiscale neighborhood. We define the matrix S N as follows: The shifts are computed with respect to wavelet ψ 1,1 . Wavelets ψ 0,0 , ψ 2,2 and ψ 2,3 have a multiscale shift s = 0 with ψ 1,1 since their support intersects that of ψ 1,1 . Wavelets ψ 1,0 , ψ 2,0 and ψ 2,1 have a multiscale shift s = -1 with ψ 1,1 since their support intersects that of ψ 1,0 . scales Figure 6: Illustration of a multiscale neighborhood on a 1D signal. In this example, the neighborhood at scale 1 is N (1) = {(-1, 0), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1), (2, 0)}. Notice that the two red wavelets at scale 2 are neighbors of the orange wavelet at scale 1 and that this relationship is described through only one shift.

S N (λ, µ) = θ λ,µ if ψ λ is an N -neighbor of ψ µ 0 otherwise. Equation (9) indicates that |θ λ,µ | ≤ u(j, k, s) with u(j, k, s) = C M 2 -(M + d 2 )|j-k|-(M+d) min(j,k) f j,k,s (18) 
and f j,k,s = f max 0, 2 -min(j,k) s ∞ -(2 -j + 2 -k ) c(M ) 2
. Let U be the matrix defined by U(λ, µ) = u(j, k, s λ,µ ). Finding a good sparsity pattern can now be achieved by solving the following problem:

min N ∈P(N N N ) |N |=K max 1≤i≤N 1 σ i (U -S N ) (i) 2 (19) 
where (U -S N ) (i) denotes the i-th column of (U -S N ).

In what follows, we assume that σ i only depends on the scale j(i) of the i-th wavelet. Similarly to the previous section, finding the optimal sparsity pattern can be performed using a greedy algorithm. A multiscale neighborhood is constructed by iteratively adding the couple (scale, (scale,shift)) that minimizes a residual. This technique is described in Algorithm 2.

Note that the norms γ k only depend on the scale j(k), so that the initialisation step only requires O(N log 2 (N )) operations. Similarly to Algorithm 1, this algorithm can be accelerated by first sorting the elements of u(j, k, s) in decreasing order. The overall complexity for this algorithm is O(N log(N ) 2 ) operations.

Numerical experiments

In this section we perform various numerical experiments in order to illustrate the theory proposed in the previous sections and to compare the practical efficiency of wavelet based Algorithm 2: An algorithm to find the minimizer of [START_REF] Escande | Spatially varying blur recovery. diagonal approximations in the wavelet domain[END_REF].

Input: u: Upper-bound defined in [START_REF] Escande | Image restoration using sparse approximations of spatially varying blur operators in the wavelet domain[END_REF]; Σ: Diagonal matrix; K: the number of elements of the neighborhood; Output: N : multiscale neighborhood minimizing [START_REF] Escande | Spatially varying blur recovery. diagonal approximations in the wavelet domain[END_REF] Initialization: u 2 (j * , k, s)2 max(j * -k,0) ;

Set N = ∅; Compute the norms γ k = U (k) 2
(The best scale and shift for this column is (k * , s * )) (The number of elements in the neighborhood relationship (j * , (k, s)) is

2 max(j * -k,0) ) Update N = N ∪ {(j * , (k * , s * ))} ; Set γ k = γ k -u 2 (j * , k * , s * ) • 2 max(j * -k,0) end end
methods against windowed convolutions (WC) based approaches. We first describe the operators and images used in our experiments. Second, we provide numerical experiments for the direct problems. Finally, we provide numerical comparisons for the inverse problem.

Preliminaries

Test images

We consider a set of 16 images of different natures: standard image processing images (the boat, the house, Lena, Mandrill (see Figure 7a), peppers, cameraman), two satellite images, three medical images, three buildings images, and two test pattern images (see Figure 7b). Due to memory limitations, we only consider images of size N = 256 × 256. Note that a full matrix of size N × N stored in double precision weighs around 32 gigabytes.

Test operators

Three different blur kernels of different complexities are considered, see Figure 8. The PSFs in Figure 8a and 8b modeled for all x ∈ [0, 1] 2 by 2D Gaussians. Therefore the associated kernel is defined for all (x, y)

∈ [0, 1] 2 × [0, 1] 2 by K(x, y) = 1 2π |C(y)| exp 1 2 (y -x) T C -1 (y)(y -x) .
The covariance matrices C are defined as:

• In Figure 8a 8c were proposed in [START_REF] Simpkins | Parameterized modeling of spatially varying optical blur[END_REF] as an approximation of real spatially optical blurs. 

Computation of the full Θ matrix

Before applying our approximation methods, matrix Θ needs to be computed explicitly. The coefficients Hψ λ , ψ µ are approximated by their discrete counterparts. If ψ λ and ψ µ denote discrete wavelets, we simply compute the wavelet transform of Hψ λ and store it into the λ-th column of Θ. This computation scheme is summarized in Algorithm 3. This algorithm corresponds to the use of rectangle methods to evaluate the dot-products:

Ω Ω K(x, y)ψ λ (y)ψ µ (x)dydx 1 N 2d x∈X y∈X K(x, y)ψ λ (y)ψ µ (x). ( 20 
)
Algorithm 3: An algorithm to compute Θ Output: Θ: the full matrix of H begin forall the λ do Compute the wavelet ψ λ using an inverse wavelet transform Compute the blurred wavelet Hψ λ Compute Hψ λ , ψ µ µ using one forward wavelet transform Set Hψ λ , ψ µ µ in the λ-th column of Θ. end end

Application to direct problems

In this section, we investigate the approximation properties of the proposed approaches in the aim of computing matrix-vector products. In all numerical experiments, we use an orthogonal wavelet transform with 4 decomposition levels. We always use Daubechies wavelets.

Influence of vanishing moments

First of all we demonstrate the influence of vanishing moments on the quality of approximations. For each number of vanishing moments M ∈ {1, 2, 4, 6, 10}, a sparse approximation H is constructed by thresholding Θ, keeping the K = l × N largest coefficients with l ∈ {0 . . . 40}. Then for each u in the set of 16 images, we compare Hu to Hu computing the pSNR. We then plot the average of pSNRs over the set of images with respect to the number of operations needed for a matrix-vector product. The results of this experiment are displayed in Figure 9. It appears that for the considered operators, using as many vanishing moments as possible was preferable. Using more than 10 vanishing moments however led to insignificant performance increase while making the numerical complexity higher. Therefore, in all the following numerical experiments we will use Daubechies wavelets with 10 vanishing moments. Note that paper [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] only explored the use of Haar wavelets. This experiment shows that very significant improvements can be obtained by leveraging regularity of the integral kernel using vanishing moments. The behavior was predicted by Theorem 2. 

Comparison of different methods

Wavelets VS windowed convolutions. In this first numerical experiment, we evaluate

H -H 2→2
where H is obtained by windowed convolutions method or sparse approximations in the wavelet domain.

The sparse approximation of the operator is constructed by thresholding the matrix Θ in order to keep the K largest coefficients. We have set K = 2 l ×N with l ∈ {0 . . . 2 log 2 N }. This way K is a multiple of the number of pixels in the image. The windowed convolutions method is constructed by partitioning the image into 2 l × 2 l sub-images where l ∈ {1 . . . log 2 N }. We also studied the case where sub-images overlap and linearly interpolated the blur between sub-images as proposed in [START_REF] Nagy | Fast iterative image restoration with a spatially varying psf[END_REF][START_REF] Hirsch | Efficient filter flow for spacevariant multiframe blind deconvolution[END_REF]. The overlap has been fixed to 50% of the sub-images sizes.

For each sub-image size, and each overlap, the norm H -H 2→2 is approximated using a power method [START_REF] Golub | Matrix computations[END_REF]. We stop the iterative process when the difference between the eigenvalues of two successive iterations is smaller than 10 -8 H 2→2 . The number of operations associated to each type of approximation is computed using theoretical complexities. For sparse matrix-vector product the number of operations is proportional to the number of non-zero coefficients in the matrix. For windowed convolutions methods, the number of operations is proportional to the number of windows (2 l × 2 l ) multiplied by the cost of a discrete convolution over a window N 2 l + N κ 2 log 2 N 2 l + N κ . Figure 10 shows the results of this experiment. The wavelet based method seems to perform much better than windowed convolutions methods for both operators. The gap is however significantly larger for the rotation blur in Figure 8b. This experiment therefore suggests that the advantage of wavelet based approaches will depend on the type of blur considered.

The influence of sparsity patterns. In this numerical experiment, we obtain a Ksparse matrix Θ K using either a simple thresholding strategy, Algorithm 1 or Algorithm 2. We evaluate the error H -H X→2 defined in [START_REF] Dahmen | Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solution[END_REF] for each methods. We set σ i = 2 j(i) , where j(i) corresponds to the scale of the i-th wavelet. As can be seen from Figure 11, Algorithm 1 provides a much better error decay for each operator than the simple thresholding strategy. This fact will be verified for real images in next paragraph. Algorithm 2 has a much slower decay than both thresholding algorithm. Notice that this algorithm is essentially blind, in the sense that it does not require knowing the exact matrix Θ to select the pattern. It would therefore work for a whole class of blur kernels, whereas the simple thresholding and Algorithm 1 work only for a specific matrix.

Figure 12 shows the sparsity patterns of matrices obtained with Algorithms 1 and 2 for K = 30N and K = 128N coefficients. The sparsity patterns look quite similar. However, Algorithm 1 selects subbands that are not selected by Algorithm 2, which might explain the significant performance differences. Similarly, Algorithm 2 select subbands that would probably be crucial for some blur kernels, but which are not significant for this particular blur kernel. (Left: kernel Figure 8a, middle: kernel in Figure 8b, right: kernel in Figure 8c). Norms are plotted with respect to the number of operations needed to compute Hu. The abscissas are in log scale. 

-K = 30N (b) Algorithm 2 -K = 30N (c) Algorithm 1 -K = 128N (d) Algorithm 2 -K = 128N
Figure 12: The structure of the wavelet matrices of Θ K are displayed for Algorithms 1 and 2 and for K = 30N and K = 128N coefficients. Algorithm 1 has been applied using the second Σ = diag(2 j(i) ) i matrix. This experiment corresponds to the blur in Figure 8b 6.2.3 Quality of matrix-vector products for real images

In this section, we evaluate the performance of wavelet based methods for matrix-vector products with real images.

Quality VS complexity. We compare Hu to Hu, where u is the image in Figure 7b and where H is obtained either by windowed convolutions methods or by sparse wavelet approximations. We plot the pSNR between the exact blurred image Hu and the blurred image using the approximated operator Hu in Figure 13. Different approximation methods are tested:

Thresholded matrix : This corresponds to a simple thresholding of the wavelet matrix Θ.

Σ n • 1 : This corresponds to applying Algorithm 1 with σ i = 1, ∀i where j(i) corresponds to the scale of the i-th wavelet.

Σ n • 2 : This corresponds to applying Algorithm 1 with σ i = 2 j(i) ∀i.

[48] : The method presented in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] with K = l × N coefficients in the matrix, with l ∈ {1, . . . , 100}.

WC, Overlap 50% : This corresponds to the windowed convolution with 50% overlap. We use this overlap since it produces better pSNRs.

Algo 2:

The algorithm finds multi-scale neighbourhoods until K = l × N coefficients populate the matrix, with l ∈ {1, . . . , 100}. In this experiment, we set M = 1, f (t) = 1 1+t and σ i = 2 j(i) , ∀i.

The pSNRs are averaged over the set of 16 images. The results of this experiment are displayed in Figure 13 for the two kernels from Figures 8b and8a. Let us summarize the conclusions from this experiment:

• A clear fact is that windowed convolution methods are significantly outperormed by wavelet based methods for all blur kernels. Moreover, the differences between wavelet and windowed convolution based methods get larger as the blurs regularity decreases.

• A second result is that wavelet based methods with fixed sparsity patterns (Algo 2) are quite satisfactory for very sparse patterns (i.e. less than 20N operations) and kernels 8a and 8b. We believe that the most important regime for applications is in the range [N, 20N ], so that this result is rather positive. However, Algo 2 suffers from two important drawbacks: first, the increase in SNR after a certain value becomes very slow. Second, this algorithm provides very disappointing results for the last blur map 8c. These results suggest that this method should be used with caution if one aims at obtaining very good approximations. In particular, the algorithm is dependent on the bound (9) which itself depends on user given parameters such as function f in (2a). Modifying those parameters might result in better results, but is usually hard to tweak manually.

• The methods Σ n • 1, Σ n • 2, Thresholded matrix all behave similarly. Method Σ n • 1 is however significantly better, showing the importance of choosing the weights σ i in equation ( 15) carefully.

• The methods Σ n • 1, Σ n • 2, Thresholded matrix outperform the method proposed in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] for very sparse patterns (< 20N ) and get outperformed for mid-range sparisfication > 40N . The main difference between algorithm [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF] and the methods proposed in this paper is the number of vanishing moments. In [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF], the authors propose using the Haar wavelet (i.e. 1 vanishing moment), while we use Daubechies wavelets with 10 vanishing moments. In practice, this results in better approximation properties in the very sparse regime, which might be the most important in applications. For midrange sparsification, the Haar wavelet provides better results. Two reasons might explain this phenomenon: first, Haar wavelets have a small spatial support, therefore matrix Θ contains less non-zero coefficients when expressed with Haar wavelets than Daubechies wavelets. Second, the constants C M and C M in Theorem ( 2) are increasing functions of the number of vanishing moments.

Illustration of artefacts. Figure 14 provides a comparison of the windowed convolutions methods and the wavelet based approach in terms of approximation quality and computing times. The following conclusions can be drawn from this experiment:

• The residual artefacts appearing in the windowed convolutions approach and wavelet based approach are different. They are localized at the interfaces between sub-images for the windowed convolutions approach while they span the whole image domain for the wavelet based approach. It is likely that using translation and/or rotation invariant wavelet would improve the result substantially.

• The approximation using the second Σ matrix produces the best results and should be preferred over more simple approaches.

• In our implementation, the windowed convolutions approach (implemented in C) is outperformed by the wavelet based method (implemented in Matlab with C-mex files). For instance, for a precision of 45dBs, the wavelet based approach is about 10 times faster.

• The computing time of 1.21 seconds for the windowed convolutions approach with a 2 × 2 partition might look awkward since the computing times are significantly lower for finer partitions. This is because the efficiency of FFT methods depend greatly on the image size. The time needed to compute an FFT is usually lower for sizes that have a prime factorization comprising only small primes (e.g. less than 7). This phenomenon explains the fact that the practical complexity of windowed convolutions algorithms may increase in a chaotic manner with respect to m. 

Application to inverse problems

In this experiment we compare the methods efficiency in deblurring problems. We assume the following classical image degradation model

v = Hu + η, η ∼ N 0, σ 2 Id , ( 21 
)
where v is the degraded image observed, u is the image to restore, H in the blurring operator and σ 2 is the noise variance. A standard TV-L2 optimization problem is solved to restore the image u:

Find u * ∈ arg min u∈R N , Hu-v 2 2 ≤α T V (u), ( 22 
)
where H is an approximating operator and T V is the isotropic total variation of u. The optimization problem is solved using the primal-dual algorithm proposed in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. We do not detail the resolution method since it is now well documented in the literature. An important remark is that the interest of the total variation term is not only to regularize the ill-posed inverse problem, but also to handle the errors in the operator approximation. In practice we found that setting α = (1 + )σ 2 N where > 0 is a small parameter provides good experimental results.

In Figures 15 and16, we present deblurring results using Figure 7b with kernel 8b.

In both the noisy and noiseless cases, the 4×4 windowed convolutions method performs worst reconstructions than wavelet approaches with 30N . Moreover, they are between 4 and 6 times significantly slowlier. Surprisingly even the implementation in the space domain is faster. The reason for that is probably a difference in the quality of implementation: we use Matlab sparse matrix-vector products for space and wavelet methods. This routine is cautiously optimized while our c implementation of windowed convolutions can probably be improved. In addition, let us mention that two wavelet transforms need to be computed at each iteration with the wavelet based methods, while this is not necessary with the space implementation. It is likely that the acceleration factor would have been significantly higher if wavelet based regularizations had been used.

In the noiseless case, the simple thresholding approach provides significantlty better SNRs than the more advanced proposed in this paper and in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF]. Note however that it produces more significant visual artefacts. This result might come as a surprise at first sight. However, as was explained in section 5, our aim to design sparsity patterns was to minimize an operator norm H -H X→2 . When dealing with an inverse problem, approximating the direct operator is not as relevant as approximating its inverse. This calls for new methods specific to inverse problems.

In the noisy case, all three thresholding strategies produce results of a similar quality. The Haar wavelet transform is however about twice faster since the Haar wavelet support is smaller. Moreover, the results obtained with the approximated matrices are nearly as good as the ones with the true operator. It suggests that it is not necessary to construct accurate approximations of the operators in practical problems. This observation is also supported by the experiment in Figure 17. In this experiment, we plot the pSNR of the deblurred image in presence of noise with respect to the number of elements in Θ K . Interestingly, a matrix containing only 20N coefficients leads to deblurred images close to the results obtained with the exact operator. In this experiment, a total of K = 5N coefficients in Θ K is enough to retrieve satisfactory results. This is a very encouraging result for blind deblurring problems.

Conclusion 7.1 Brief summary

In this paper, we introduced an original method to represent spatially varying blur operators in the wavelet domain. We showed that this new technique has a great adaptivity to the smoothness of the operator and exhibit an O(N -d/M ) complexity, where M denotes the kernel regularity. This method is versatile since it is possible to adapt it to the kind of images that have to be treated. We showed that much better performance to approximate the direct operator can be obtained by leveraging the fact that natural signals exhibit some structure in the wavelet domain. Moreover, we proposed a original method to design sparsity patterns for class of blurring operators when only the operator regularity is known. These theoretical results were confirmed by practical experiments on real images. Even though our conclusions are still preliminary since we tested only small 256 × 256 images, the wavelet based methods seem to significantly outperform standard windowed convolutions based approaches. Moreover, they seem to provide satisfactory deblurring results on practical problems with a complexity no greater than 5N operations, where N denotes the pixels number.

Outlook

We provided a simple complexity analysis based solely on the global regularity of the kernel function. It is well known that wavelets are able to adapt locally to the structures of images or operators [START_REF] Cohen | Adaptive wavelet methods ii-beyond the elliptic case[END_REF]. The method should thus provide an efficient tool for piecewise regular blurs appearing in computer vision for instance. It could be interesting to evaluate precisely the complexity of wavelet based approximations for piecewise regular blurs.

A key problem of the wavelet based approach is the need to project the operator on a wavelet basis. In this paper we performed this operation using the computationally intensive Algorithm 3. It could be interesting to derive fast projection methods. Let us note that such methods already exist in the literature [START_REF] Beylkin | Fast wavelet transform and numerical algorithm[END_REF]. A similar procedure was used in the specific context of spatially varying blur in [START_REF] Wei | Fast space-varying convolution using matrix source coding with applications to camera stray light reduction[END_REF]. Figure 17: pSNR of the deblurred image with respect to the number of coefficients in the matrix divided by N for the image Figure 7a and the kernel Figure 8a. The matrix is constructed using Algorithm 1 with the second Σ = diag(2 j(i) ) i matrix with K = lN coefficients for l from 1 to 30. Deblurred imaged using these matrices are compared with the one obtained with the exact operator.

Moreover, the proposed method can already be applied to situations where the blur mostly depends on the instrument: the wavelet representation has to be computed once for all off-line, and then all deblurring operations can be handled much faster. This situation occurs in satellite imaging or for some fluorescence microscopes (see e.g. [START_REF] Hajlaoui | Satellite image restoration in the context of a spatially varying point spread function[END_REF][START_REF] Temerinac-Ott | Multiview deblurring for 3-d images from light-sheet-based fluorescence microscopy[END_REF][START_REF] Maalouf | Fluorescence microscopy three-dimensional depth variant point spread function interpolation using zernike moments[END_REF]).

The design of good sparsity patterns is an open and promising research avenue. In particular, designing patterns adapted to specific inverse problems could have some impact as was illustrated in section 6.3.

Another exciting research perspective is the problem of blind deconvolution. Expressing the unknown operator as a sparse matrix in the wavelet domain is a good way to improve the problem identifiability. This is however far from being sufficient since the blind deconvolution problem has far more unknowns (a full operator and an image) than data (a single image). Further assumptions should thus be made on the wavelet coefficients regularity, and we plan to study this problem in a forthcoming work.

Finally let us mention that we observed some artefacts when using the wavelet based methods with high sparsity levels. This is probably due to their non translation and rotation invariance. It could be interesting to study sparse approximations in redundant wavelet bases or other time-frequency bases. It was shown for instance in [START_REF] Candes | Curvelets and fourier integral operators[END_REF] that curvelets are near optimal to represent Fourier integral operators. Similarly, Gabor frames are known to be very efficient to describe smoothly varying integral operators in the 1D setting [START_REF] Hrycak | Practical estimation of rapidly varying channels for ofdm systems[END_REF]. Lemma 3 below is a common result in numerical analysis [START_REF] Deny | Les espaces du type de beppo levi[END_REF] (see also Theorem 3.2.1 in [START_REF] Cohen | Numerical analysis of wavelet methods[END_REF]). It ensures that the approximation error of a function by a polynomial of degree M is bounded by the Sobolev semi-norm W M,p . Lemma 3 (Polynomial approximation). For 1 ≤ p ≤ +∞, M ∈ N * and Ω ⊂ R d a bounded domain, the following bound holds

inf g∈Π M f -g L p (Ω) ≤ C |f | W M +1,p (Ω) , ( 23 
)
where C is a constant that depends on d, M, p and Ω only. Moreover, if I h ⊂ Ω ⊂ R d is a cube of sidelength h, the following estimate holds

inf g∈Π M f -g L p (I h ) ≤ Ch M +1 |f | W M +1,p (I h ) , ( 24 
)
where C is a constant only depending on d, M, p and Ω.

Let I λ = supp(ψ λ ). From the wavelets definition, we get Proof of Lemma 1. Since the mapping (x, y) → K(x, y)ψ λ (y)ψ µ (x) is bounded, it is also absolutely integrable on compact domains. Therefore Hψ λ , ψ µ is well-defined for all (λ, µ). Recall that λ = (j, m, e) ∈ Λ and µ = (k, n, e ) ∈ Λ. Moreover Fubini's theorem can be applied and we get To prove the result, we distinguish the cases j ≤ k and j > k. In this proof, we focus on the case j ≤ k. The other one can be obtained by symmetry, using the facts that Hψ λ , ψ µ = ψ λ , H * ψ µ and that H and H * are both blurring operators in the same class.

I λ =
To exploit the regularity of K and ψ, note that for all g ∈ Π M -1 , 

  (a) Sharp image (b) Blurred image and the associated PSF

Figure 1 :

 1 Figure 1: An example in computer vision. Image degraded by spatially varying blur due to a camera shake. Images are from [27] and used here by courtesy of Michael Hirsch.

Figure 2 :

 2 Figure 2: An example in biology. Image of a multicellular tumor spheroid imaged in 3D using Selective Plane Illumination Microscope (SPIM). Fluorescence beads (in green) are inserted in the tumor model and allow the observation of the PSF at different locations. Nuclei are stained in red. On the left-hand-side, 3D PSFs outside the sample are observed.On the right-hand-side, 3D PSFs inside the sample are observed. This image is from[START_REF] Jorand | Deep and clear optical imaging of thick inhomogeneous samples[END_REF] and used here by courtesy of Corinne Lorenzo.

Figure 3 :

 3 Figure 3: Three PSFs displayed in a XZ plan at different z depths: -20µm , 0µm and 20µm. PSFs are generated using Gibson and Lanni 3D optical model from the PSF Generator [31]. The parameters used are n i = 1.5, n s = 1.33, t i = 150µm, NA = 1.4 and a wavelength of 610nm.

Figure 4 :

 4 Figure 4: Three pictures and the mean amplitude of their wavelet coefficients at each scale of the wavelet transform.

2 σ 2 j;

 22 Define O = (1, . . . , 1) ∈ R N ; O(j) is the index of the largest coefficient in A (j) not yet added to S K ; begin for k = 1 to K do Find l = arg max j=1...N γ j ; (Find the column l with largest Euclidean norm) Set S K (I l (O(l)), l) = Θ(I l (O(l)), l) ; (Add the coefficient in the l-th column at index I l (O(l))

Figure 5 :

 5 Figure 5: Illustration of a multiscale shift on a 1D signal of size 8 with the Haar basis.The shifts are computed with respect to wavelet ψ 1,1 . Wavelets ψ 0,0 , ψ 2,2 and ψ 2,3 have a multiscale shift s = 0 with ψ 1,1 since their support intersects that of ψ 1,1 . Wavelets ψ 1,0 , ψ 2,0 and ψ 2,1 have a multiscale shift s = -1 with ψ 1,1 since their support intersects that of ψ 1,0 .
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 22 using the upper-bound u; begin for k = 1 to K do Find j * = arg max j=1...N γ j ; (The column with largest norm) Find (k * , s * ) = arg max (k,s)∈N N N (j * )

  : C(y) = f (y 1 ) 0 0 f (y 1 ) with f (t) = 2t, for t ∈ [0, 1]. The PSFs are truncated out of a 11 × 11 support. • In Figure 8b: C(y) = R(y) T D(y)R(y) where R(y) is a rotation matrix of angle θ = arctan y 1 -0.5 y 2 -0.5 and D(y) = g(y) 0 0 h(y) with g(y) = 10 y -(0.5, 0.5) T 2 and h(y) = 2 y -(0.5, 0.5) T 2 . The PSFs are truncated out of a 21 × 21 support. The PSFs in Figure
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 78 Figure 7: The two images of size 256 × 256 used in these numerical experiments

Figure 9 :

 9 Figure 9: pSNR of the blurred image using the approximated operator Hu with respect to the blurred image using the exact operator Hu. pSNRs have been averaged over the set of test images. Daubechies wavelets have been used with different number vanishing moments M ∈ {1, 2, 4, 6, 10}. The case M = 1 corresponds to Haar wavelets.
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 10 Figure 10: The operator norms H -H
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 211 Figure 11: The operator norms H -H

Figure 13 :

 13 Figure 13: pSNR of the blurred image using the approximated operators Hu with respect to the blurred image using the exact operator Hu. The results have been obtained with blur Figure 8a for top-left graph, blur Figure 8b for top-right graph and blur Figure 8c for the bottom. pSNR are averaged over the set of 16 images.

Figure 14 :

 14 Figure 14: Blurred images and the differences Hu -Hu for the kernel Figure 8b. Results on the left are obtained using windowed convolutions approximations with 2×2, 4×4, 8×8 and 16 × 16 partitionings all with 50% overlap. Results on the right are obtained using Algorithm 1 with the second Σ = diag(2 j(i) ) i matrix keeping K = lN coefficients. The pSNR and the time needed for the computation for the matrix-vector product are shown.

Figure 15 :

 15 Figure 15: Deblurring results for kernel Figure 8b and without noise. Top-left: degraded image.Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based method and a simple thresholding. Middle-right: deblurred by the wavelet based method and Algorithm 2 with the second Σ = diag(2 j(i) ) i matrix. Bottom: deblurred using a 4 × 4 windowed convolutions algorithm with 50% overlap. For wavelet methods K = 30N coefficients are kept in matrices. pSNR are displayed for each restoration.

Figure 16 :

 16 Figure 16: Deblurring results for kernel Figure 8b and with σ = 0.02 noise. Top-left: degraded image. Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based method and a simple thresholding. Middle-right: deblurred by the wavelet based method and Algorithm 2 with the second Σ = diag(2 j(i) ) i matrix. Bottom: deblurred using a 4 × 4 windowed convolutions algorithm with 50% overlap. For wavelet methods K = 30N coefficients are kept in matrices. pSNR are displayed for each restoration. 37

  2 -j (m + [-c(M )/2, c(M )/2] d ) therefore |I λ | = c(M ) d • 2 -jd .We will now prove Lemma 1.

  Hψ λ , ψ µ = Iµ I λ K(x, y)ψ λ (y)ψ µ (x)dydx = I λ Iµ K(x, y)ψ λ (y)ψ λ (x)dxdy.

2 ψ L 1 .

 21 Iµ g(x)ψ µ (x)dx = 0 since ψ has M vanishing moments. Therefore, Hψ λ , ψ µ = I λ inf g∈Π M -1 Iµ(K(x, y) -g(x)) ψ λ (y)ψ µ (x)dxdy, and| Hψ λ , ψ µ | ≤ I λ inf g∈Π M -1 Iµ |K(x, y) -g(x)| |ψ λ (y)| |ψ µ (x)| dxdy ≤ I λ inf g∈Π M -1 K( • , y) -g L ∞ (Iµ) ψ µ L 1 (Iµ) |ψ λ (y)| dy. By Lemma 3, inf g∈Π M -1 K( • , y) -g L ∞ (Iµ) 2 -kM |K( • , y)| W M,∞ (Iµ) since I µ is a cube of sidelength c(M ) • 2 -k . We thus obtain | Hψ λ , ψ µ | 2 -kM ψ µ L 1 (Iµ) ψ λ L 1 (I λ ) ess sup y∈I j,m |K( • , y)| W M,∞ (Iµ) 2 -kM 2 -dj 2 2 -dk 2 ess sup y∈I λ |K( • , y)| W M,∞ (Iµ) since ψ λ L 1 = 2 -dj Since H ∈ A(M, f ) ess sup y∈I λ |K( • , y)| W M,∞ (Iµ) = ess sup y∈I λ |α|=M ess sup x∈Iµ |∂ α x K(x, y)| ≤ |α|=M ess sup (x,y)∈I λ ×Iµ f ( x -y ∞ ) ess sup (x,y)∈I λ ×Iµ f ( x -y ∞ ) . Because f is a non-increasing function, f ( x -y ∞ ) ≤ f (dist (I λ , I µ )) since dist (I λ , I µ ) = inf (x,y)∈I λ ×Iµ x -y ∞ . Therefore | Hψ λ , ψ µ | 2 -kM 2 -dj 2 2 -dk 2 f (dist (I λ , I µ )) = 2 -(M + d 2 )|j-k| 2 -j(M +d) f (dist (I λ , I µ )) .The case k < j gives| Hψ λ , ψ µ | 2 -(M + d 2 )|j-k| 2 -k(M +d) f (dist (I λ , I µ )) ,which allows to conclude that| Hψ λ , ψ µ | 2 -(M + d 2 )|j-k| 2 -min(j,k)(M +d) f (dist (I λ , I µ )) ,B Proof of Theorem 2Let us begin with some preliminary results. Recall that λ = (j, m, e) ∈ Λ and µ = (k, n, e ) ∈ Λ. Since f is compactly supported on [0, κ] and bounded by c f , we have f λ,µ = f (dist (I λ , I µ )) ≤ c f 1 dist(I λ ,Iµ)≤κ . By equation[START_REF] Cohen | Numerical analysis of wavelet methods[END_REF], dist (I µ , I λ ) ≤ κ if 2 -j m -2 -k n ∞ ≤ R κ j,k, where R κ j,k = (2 -j + 2 -k )c(M )/2 + κ.
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Then G e,e j,k ≤ (2 j 2 k+1 R κ j,k ) d .

Proof. First note that is a discrete hyper-cube of sidelength bounded above by 2 k+1 R κ j,k . Therefore G e,e j,k,m ≤ (2 k+1 R κ j,k ) d coefficients. Moreover, |T j | = 2 jd , hence the number of coefficients in G e,e j,k is bounded above by (2

Proof of i). We denote J max = log 2 (N )/d the highest scale of decomposition. First note that a sufficient condition for 2

. In the following, we let J(η) = min(J(η), J max ) and define

G e,e j,k .

The overall number of non zero coefficients

The first sum yields

Jmax-1 j=0

Jmax-1 k=0

The second sum is handled similarly and the third sum gives

Proof of ii). Since Ψ is an orthogonal wavelet transform

Let ∆ η = Θ -Θ η . We will make use of the following version of Shur inequality

Since the upper-bound ( 9) is symmetric,

The first sum on k < j is equal to

The second sum on k ≥ j is: