A Branch and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots - Archive ouverte HAL
Article Dans Une Revue Artificial Intelligence Année : 2014

A Branch and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots

Résumé

Parallel robots enjoy enhanced mechanical characteristics that have to be contrasted with a more complicated design. In particular, they often have parallel singularities at some poses, and the robots may become uncontrollable, and could even be damaged, in such configurations. The computation of the connected components in the set of nonsingular reachable configurations, called generalized aspects, is therefore a key issue in their design. This paper introduces a new method, based on numerical constraint programming, to compute a certified enclosure of the generalized aspects. Though this method does not allow counting their number rigorously, it constructs inner approximations of the nonsingular workspace that allow commanding parallel robots safely. It also provides a lower-bound on the exact number of generalized aspects. It is moreover the first general method able to handle any parallel robot in theory, though its computational complexity currently restricts its usage to robots with three degrees of freedom. Finally, the contraint programming paradigm it relies on makes it possible to consider various additional constraints (e.g., collision avoidance), making it suitable for practical considerations.

Domaines

Electronique
Fichier principal
Vignette du fichier
HAL_ARTINT_2014.pdf (1.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00971348 , version 1 (02-04-2014)

Identifiants

Citer

Stéphane Caro, Damien Chablat, Alexandre Goldsztejn, Daisuke Ishii, Christophe Jermann. A Branch and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots. Artificial Intelligence, 2014, 211, pp.34--50. ⟨10.1016/j.artint.2014.02.001⟩. ⟨hal-00971348⟩
463 Consultations
281 Téléchargements

Altmetric

Partager

More