Community detection thresholds and the weak Ramanujan property - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Community detection thresholds and the weak Ramanujan property

Résumé

Decelle et al.~\cite{Decelle11} conjectured the existence of a sharp threshold on model parameters for community detection in sparse random graphs drawn from the {\em stochastic block model}. Mossel, Neeman and Sly~\cite{Mossel12} established the negative part of the conjecture, proving impossibility of non-trivial reconstruction below the threshold. In this work we solve the positive part of the conjecture. To that end we introduce a modified adjacency matrix $B$ which counts {\em self-avoiding} paths of a given length $\ell$ between pairs of nodes. We then prove that for logarithmic length $\ell$, the leading eigenvectors of this modified matrix provide a non-trivial reconstruction of the underlying structure, thereby settling the conjecture. A key step in the proof consists in establishing a {\em weak Ramanujan property} of the constructed matrix $B$. Namely, the spectrum of $B$ consists in two leading eigenvalues $\rho(B)$, $\lambda_2$ and $n-2$ eigenvalues of a lower order $O(n^{\epsilon}\sqrt{\rho(B)})$ for all $\epsilon>0$, $\rho(B)$ denoting $B$'s spectral radius.
Fichier principal
Vignette du fichier
rama_final.pdf (232.6 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00969235 , version 1 (02-04-2014)

Identifiants

  • HAL Id : hal-00969235 , version 1

Citer

Laurent Massoulié. Community detection thresholds and the weak Ramanujan property. STOC 2014: 46th Annual Symposium on the Theory of Computing, Jun 2014, New York, United States. pp.1-10. ⟨hal-00969235⟩

Collections

INRIA INRIA2
352 Consultations
652 Téléchargements

Partager

More