DEC-MDP / DEC-POMDP - Archive ouverte HAL
Chapitre D'ouvrage Année : 2010

DEC-MDP / DEC-POMDP

Aurélie Beynier
Daniel Szer
  • Fonction : Auteur
  • PersonId : 830433

Résumé

Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustrative applications.
Fichier non déposé

Dates et versions

hal-00969197 , version 1 (02-04-2014)

Identifiants

  • HAL Id : hal-00969197 , version 1

Citer

Aurélie Beynier, François Charpillet, Daniel Szer, Abdel-Illah Mouaddib. DEC-MDP / DEC-POMDP. Olivier Buffet, Olivier Sigaud. Markov Decision Processes in Artificial Intelligence, Wiley-ISTE, pp.277-313, 2010, 978-1-84821-167-4. ⟨hal-00969197⟩
2209 Consultations
0 Téléchargements

Partager

More