Random walk models for geometry-driven image super-resolution - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Random walk models for geometry-driven image super-resolution

Résumé

This paper addresses stochastic geometry-driven im- age models and its application to super-resolution issues. Whereas most stochastic image models rely on some priors on the distribution of grey-level configurations (e.g., patch- based models, Markov priors, multiplicative cascades,...), we here focus on geometric priors. We aim at simulating tex- ture samples while controlling high-resolution geometrical features. In this respect, we introduce a stochastic model for texture orientation fields stated as a 2D Orstein-Uhlenbeck process. We show that this process resorts in the stationary case to priors on orientation statistics. We exploit this model to state image super-resolution as a geometry-driven vari- ational minimization, where the geometry is sampled from the proposed conditional 2D Orstein-Uhlenbeck process. We demonstrate the relevance of this approach for real images as- sociated with the remote sensing of ocean surface dynamics.
Fichier non déposé

Dates et versions

hal-00960533 , version 1 (18-03-2014)

Identifiants

Citer

Ronan Fablet, Brahim Boussidi, Emmanuelle Autret, Bertrand Chapron. Random walk models for geometry-driven image super-resolution. ICASSP 2013 : 38th International Conference on Acoustics, Speech, and Signal Processing, May 2013, Vancouver, Canada. pp.2207 - 2211, ⟨10.1109/ICASSP.2013.6638046⟩. ⟨hal-00960533⟩
106 Consultations
0 Téléchargements

Altmetric

Partager

More